• 제목/요약/키워드: STARS: formation

검색결과 288건 처리시간 0.024초

OBSERVATIONS OF STAR FORMATION INDUCED BY GALAXY-GALAXY AND GALAXY-INTERGALACTIC MEDIUM INTERACTIONS WITH AKARI

  • Suzuki, T.;Kaneda, H.;Onaka, T.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.243-248
    • /
    • 2012
  • Nearby spiral galaxies M101 and M81 are considered to have undergone a galaxy-galaxy interaction. M101 has experienced HI gas infall due to the interaction. With AKARI far-infrared (IR) photometric observations, we found regions with enhanced star forming activity, which are spatially close to regions affected by the interaction. In addition, the relation between the star formation rate (SFR) and the gas content for such regions shows a significant difference from typical spiral arm regions. We discuss possible explanations for star formation processes on a kiloparsec scale and the association with interaction-triggered star formation. We also observed the compact group of galaxies Stephan's Quintet (SQ) with the AKARI Far-infrared Surveyor (FIS). The SQ shows diffuse intergalactic medium (IGM) due to multiple collisions between the member galaxies and the IGM. The intruder galaxy NGC 7318b is currently colliding with the IGM and causes a large-scale shock. The 160 micron image clearly shows the structure along the shock ridge as seen in warm molecular hydrogen line emission and X-ray emission. The far-IR emission from the shocked region comes from the luminous [CII]$158{\mu}m$ line and cold dust (~ 20 K) that coexist with molecular hydrogen gas. Survival of dust grains is indispensable to form molecular hydrogen gas within the collision age (~ 5 Myr). At the stage of the dusty IGM environment, [CII] and $H_2$ lines rather than X-ray emission are powerful cooling channels to release the collision energy.

망원경의 상 형성에 대한 지구과학교사들의 개념 유형 (Earth Science Teachers' Conceptual Types about Image Formation through a Telescope)

  • 이석우;임인성;최승언
    • 한국지구과학회지
    • /
    • 제30권7호
    • /
    • pp.855-868
    • /
    • 2009
  • 본 연구의 목적은 망원경에서 별빛이 결상되는 원리를 교사들이 어떻게 이해하고 있는지를 알아보고자 하는 것이다. 경기도와 서울지역의 지구과학 교사 101명을 대상으로 설명식 지필문항 검사를 수행하고, 지구과학교육 전공자 3명이 교차분석을 실시하였다. 대부분의 교사들이 볼록렌즈에서 상이 형성되는 과정에 대한 체계적인 개념을 가지고 있지 않았고, 특히 상의 개념과 스크린의 역할에 대한 이해가 많이 부족하였다. 또한 망원경에서 별빛이 결상되는 원리에 대한 과학적 개념을 가지고 있는 교사는 참여교사의 3%로 극히 낮았으며 거의 대부분의 교사들이 볼록렌즈나 빛의 단편적인 성질을 이용하여 별빛의 결상을 이해를 시도하는 비과학적 혹은 대체개념을 가지고 있는 것으로 나타났다.

AKARI-SDSS-GALEX SURVEYS: SPECTRAL ENERGY DISTRIBUTIONS OF NEARBY GALAXIES

  • Buat, V.;Yuan, F.T.;Takeuchi, T.T.;Giovannoli, E.;Heinis, S.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.317-320
    • /
    • 2012
  • A sample of nearby galaxies was built from the AKARI/FIS all sky survey cross-correlated with the SDSS and GALEX surveys. The spectral energy distributions from 0.15 to 160 microns of these galaxies are analysed to study dust attenuation and star formation properties. The calibrations of the amount of dust attenuation as a function of the IR-to-UV flux ratio and the FUV-NUV colour are re-investigated: the former one is confirmed to be robust and accurate whereas the use of the FUV-NUV colour to measure dust attenuation is found highly uncertain. The current star formation rate given by the SED fitting process is compared to that directly obtained from the UV and total IR luminosities. It leads to an accurate estimate of dust heating by old stars. We emphasize the importance of such a sample as a reference for IR selected star forming galaxies in the nearby universe.

Star Formation and Feedback in Nuclear Rings of Barred Galaxies

  • 서우영;김웅태
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.39.1-39.1
    • /
    • 2012
  • Nuclear rings in barred galaxies are sites of active star formation (SF). We investigate SF and its feedback effects occurring in barred galaxies, for the first time, using high-resolution grid-based hydrodynamic simulations. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. The SF recipes include a density threshold corresponding to the Jeans condition, a SF efficiency of 1%, and momentum feedback via Type II supernova events together with stellar-wind mass loss. To investigate various environments, we vary the gas sound speed as well as the efficiency of momentum injection in the in-plane direction. We find that when the sound speed is small, the surface density of a ring becomes largely independent of the azimuthal angle, resulting in star-forming regions distributed over the whole length of the ring. When the sound speed is large, on the other hand, the ring achieves the largest density at the contact points between the dust lanes and the ring where SF occurs preferentially, leading to a clear age gradient of star clusters in the azimuthal direction. Since rings shrink with time, a radial age gradient of star clusters naturally develop regardless of sound speed, consistent with observations. SF persists over 200 Myr, with an average rate of ${\sim}1.3M_{\odot}/yr$ similar to observed values. Rings gradually become hostile to SF as they lose gas into stars and turbulent motions dominate.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

MOLECULAR LINE OBSERVATION TOWARD POLARIS FLARE

  • Chi Seung-Youp;Park Yong-Sun
    • 천문학회지
    • /
    • 제39권1호
    • /
    • pp.9-17
    • /
    • 2006
  • In an attempt to investigate star formation activity and statistical properties of clumps of high Galactic latitude clouds (HLCs), we mapped the Polaris Flare region, PF121.3+25.5, in $^{12}CO\;and\;^{13}CO$ J = 1 - 0 using SRAO 6-m telescope and also observed its 12 $^{13}CO$ peak positions in CS J = 2 - 1 with TRAO 14-m telescope. $^{13}CO$ integrated intensity map shows clearly its clumpy structure and the locations of clumps well agree with $^{12}CO$morphology. CS line is not detected toward the 12 $^{13}CO$ peak positions, so we can conclude there are no dense $(\sim10^4\;cm^{-3})$ in this region. We decomposed 105 clumps from $^{13}CO$ map using GAUSSCLUMPS algorithm. The mass of clumps ranges from $7.8\;M_{\odot}\;to\;7.4{\times}10^{-2}\;M_{\odot}$ with a total mass of $66.4\;M_{\odot}$ The mass spectrum follows a power law, dN/dM ${\propto}\;M^{-\alpha}$ with a power index of ${\alpha}=1.91{\pm}0.13$. The virial masses of clumps are in the range of $10{\sim}100M_{LTE}$ and so these clumps are considered to be gravitationally unbound.

The AGN-Starburst Connection traced by the Nitrogen Abundance

  • Matsuoka, Kenta;Nagao, Tohru;Marconi, Alessandro;Maiolino, Roberto;Park, Daeseong;Woo, Jong-Hak;Shin, Jaejin;Ikeda, Hiroyuki;Taniguchi, Yoshiaki
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.40.2-40.2
    • /
    • 2014
  • The connection between the active galactic nuclei (AGNs) and star formation activity is one of the most important issues in understanding the coevolution of supermassive black holes (SMBHs) and galaxies. In our recent study, by using SDSS quasar spectra we found that the emission-line flux rations involving a nitrogen line, i.e., $NV{\lambda}1240$, correlate with the Eddington ratio. This correlation suggests that the mass accretion into SMBH is associated with a post-starburst phase, when AGB stars enrich the interstellar medium with the nitrogen. Moreover, we focused on nitrogen-loud quasars, which have prominent emission lines of the nitrogen, to investigate whether this argument is correct or not. We will present our recent results described above and discuss the relation between the star formation and feeding to SMBHs.

  • PDF

Dark Matter Deficient Galaxies Produced via High-velocity Galaxy Collisions In High-resolution Numerical Simulations

  • Shin, Eun-jin;Jung, Minyong;Kwon, Goojin;Kim, Ji-hoon;Lee, Joohyun;Jo, Yongseok;Oh, Boon Kiat
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.34.1-34.1
    • /
    • 2020
  • The recent discovery of diffuse dwarf galaxies that are deficient in dark matter appears to challenge the current paradigm of structure formation in our Universe. We describe the numerical experiments to determine if the so-called dark matter deficient galaxies (DMDGs) could be produced when two gas-rich, dwarf-sized galaxies collide with a high relative velocity of ~ 300km/s. Using idealized high-resolution simulations with both mesh-based and particle-based gravito-hydrodynamics codes, we find that DMDGs can form as high-velocity galaxy collisions separate dark matter from the warm disk gas which subsequently is compressed by shock and tidal interaction to form stars. Then using a large simulated universe ILLUSTRISTNG, we discover a number of high-velocity galaxy collision events in which DMDGs are expected to form. However, we did not find evidence that these types of collisions actually produced DMDGs in the ILLUSTRISTNG100-1 run. We argue that the resolution of the numerical experiment is critical to realize the "collision-induced" DMDG formation scenario. Our results demonstrate one of many routes in which galaxies could form with unconventional dark matter fractions.

  • PDF

The first UV fundamental plane and evidence of star formation in early-type galaxies

  • Jeong, Hyun-Jin;Yi, Suk-Young;Bureau, Martin;Davies, Roger L.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • We present GALEX (Galaxy Evolution Explorer) far (FUV) and near (NUV) ultraviolet imaging of 34 nearby early-type galaxies from the SAURON representative sample of 48 E/S0 galaxies, all of which have ground-based optical imaging from the MDM Observatory. The surface brightness profiles of nine galaxies (~26 per cent) show regions with blue UV-optical colours suggesting recent star formation. Five of these (~15 per cent) show blue integrated UV-optical colours that set them aside in the NUV integrated colour-magnitude relation. These are objects with either exceptionally intense and localised NUV fluxes or blue UV-optical colours throughout. They also have other properties confirming they have had recent star formation, in particular Hbeta absorption higher than expected for a quiescent population and a higher CO detection rate. This suggests that residual star formation is more common in early-type galaxies than we are used to believe. NUV-blue galaxies are generally drawn from the lower stellar velocity dispersion (sigma_e <200 km/s) and thus lower dynamical mass part of the sample. We have also constructed the first UV Fundamental Planes and show that NUV blue galaxies bias the slopes and increase the scatters. If they are eliminated the fits get closer to expectations from the virial theorem. Although our analysis is based on a limited sample, it seems that a dominant fraction of the tilt and scatter of the UV Fundamental Planes is due to the presence of young stars in preferentially low-mass early-type galaxies.

  • PDF

ENVIRONMENTAL DEPENDENCE OF STELLAR POPULATION PROPERTIES OF HIGH-REDSHIFT GALAXIES

  • LEE, SEONG-KOOK;IM, MYUNGSHIN;KIM, JAE-WOO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.413-415
    • /
    • 2015
  • How galaxy evolution differs in different environments is one of the intriguing questions in the study of structure formation. While galaxy properties are clearly distinguished in different environments in the local universe, it is still an open issue what causes this environmental dependence of various galaxy properties. To address this question, in this work, we investigate the build-up of passive galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing on its dependence on galaxy environment. In the UKIDSS/Ultra Deep Survey (UDS) field, we identify high-redshift galaxy cluster candidates within this redshift range. Then, using deep optical and near-infrared data from Subaru and UKIRT available in this field, we analyze and compare the stellar population properties of galaxies in the clusters and in the field. Our results show that the environmental effect on galaxy star-formation properties is a strong function of redshift as well as stellar mass - in the sense that (1) the effect becomes significant at small redshift, and (2) it is stronger for low-mass ($M_{\ast}<10^{10}M_{\odot}$) galaxies. We have also found that galaxy stellar mass plays a more significant role in determining their star-formation property - i.e., whether they are forming stars actively or not - than their environment throughout the redshift range.