• Title/Summary/Keyword: SSU

Search Result 160, Processing Time 0.027 seconds

A New Lichen-Forming Fungus, Aspicilia humida, from a Forested Wetland in South Korea, with a Taxonomic Key for Aspicilioid Species of Korea

  • Lee, Beeyoung Gun;Shin, Hyun Tak;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Aspicilia humida Lee is described as a new lichen-forming fungus from a wetland forest, South Korea. The new species is distinguishable from Aspicilia aquatica (Fr.) Körb., the most similar species, by the absence of prothallus, black disk without green color in water, olivebrown epihymenium, shorter hymenium, hymenium I + yellowish blue-green, wider paraphysial tips without a vivid pigment, smaller asci, smaller ascospores, and the presence of stictic acid. Molecular analyses employing internal transcribed spacer (ITS) and mitochondrial small subunit (mtSSU) sequences strongly support A. humida as a distinct species in the A. cinerea group. A surrogate key is provided to assist in the identification of all 28 aspicilioid species of Korea.

Lecanora neobarkmaniana (Lecanorales, Lecanoraceae), A New Lichen Species from South Korea

  • Jung Shin Park;Sang-Kuk Han;Soon-Ok Oh
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.16-25
    • /
    • 2023
  • Lecanora is one of the largest genera of lichens worldwide. These lichens can be easily seen, and are commonly found on trees and rocks. Most Korean Lecanora species belong to the Lecanora subfusca group, which has well-defined superficial thallus, red-brown apothecia, and soredia. The new species of L. neobarkmaniana grows on rocks, farinose soredia coalescing, usually covering the whole thallus, and containing atranorin and zeorin. We used internal transcribed spacer (ITS) and mitochondrial small subunit (mtSSU) sequence data to identify the phylogenetic relationship across Lecanora sequence data and found the species to form different clades. In this study, we reported some interesting findings and described the genetic relationship with other sorediate Lecanora species and the characteristics of the new species. An identification key for the Korean sorediate Lecanora species is given.

New records of the genus Chroomonas and two Chroomonas species (Cryptomonadales, Cryptophyceae) from Korean freshwater

  • Hyeon Ju Nam;Miran Kim;Seok Won Jang;Bok Yeon Jo;Eunyoung Moon;Seung Won Nam
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.435-444
    • /
    • 2021
  • The genus Chroomonas is a group of blue-green colored cryptomonads. This study describes two freshwater Chroomonas species for the first time in South Korea: Chroomonas nordstedtii Hansgirg and Chroomonas coerulea (Geitler) Skuja. We examined the morphology and ultrastructure of these species by light microscopy, scanning electron microscopy, and transmission electron microscopy. These two Chroomonas species were blue-green colored and ovate to oval-shaped. Chroomonas nordstedtii was characterized by two Maupas ovals with hexagonal periplast plates, whereas C. coerulea was characterized by one eyespot with rectangular periplast plates. A molecular phylogeny with data from nuclear SSU rRNA and chloroplast rbcL genes revealed that Korean C. nordstedtii formed a distinct clade with NIES-708, NIES-1004 from Japan, and UTEX 2779 from Colorado, USA, while C. coerulea formed a clade with ACOI 1366 from Portugal.

Revisiting the Parvilucifera infectans / P. sinerae (Alveolata, Perkinsozoa) species complex, two parasitoids of dinoflagellates

  • Jeon, Boo Seong;Nam, Seung Won;Kim, Sunju;Park, Myung Gil
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Members of the family Parviluciferaceae (Alveolata, Perkinsozoa) are the well-known dinoflagellate parasitoids along with Amoebophrya ceratii species complex and parasitic chytrid Dinomyces arenysensis and contain six species across three genera (i.e., Parvilucifera infectans, P. sinerae, P. rostrata, and P. corolla, Dinovorax pyriformis, and Snorkelia prorocentri) so far. Among Parvilucifera species, the two species, P. infectans and P. sinerae, are very similar or almost identical each other morphologically and genetically, thereby make it difficult to distinguish between the two. The only main difference between the two species known so far is the number of sporangium wall (i.e., 2 layers in P. infectans vs. 3 layers in P. sinerae). During sampling in Masan bay, Korea during the spring season of 2015, the dinoflagellate Akashiwo sanguinea cells infected by the parasite Parvilucifera were observed and this host-parasite system was established in culture. Using this culture, its morphological and ultrastructural features with special emphasis on the variation in the number of sporangium wall over developmental times, were investigated. In addition, the sequences of rDNA regions and ${\beta}-tubulin$ genes were determined. The result clearly demonstrated that the trophocyte at 36 h was covered with 4 layers, and then outer layer of the sporocyte gradually degraded over time, resulting in wall structure consisting of two layers, with even processes being detached from 7-day-old sporangium with smooth surface, indicating that the difference in the number of layers seems not to be an appropriate ultrastructural character for distinguishing P. infectans and P. sinerae. While pairwise comparison of the large subunit rDNA sequences showed 100% identity among P. infectans / P. sinerae species complex, genetic differences were found in the small subunit (SSU) rDNA sequences but the differences were relatively small (11-13 nucleotides) compared with those (190-272 nucleotides) found among the rest of Parvilucifera species (P. rostrata and P. corolla). Those small differences in SSU rDNA sequences of P. infectans / P. sinerae species complex may reflect the variations within inter- strains of the same species from different geographical areas. Taken together, all morphological, ultrastructural, and molecular data from the present study suggest that they are the same species.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Stain improvement in the white button mushroom 'Seolgang' and its varietal characteristics in Agaricus bisporus

  • Lee, Byung-Joo;Lee, Mi-Ae;Kim, Yong-Gyun;Lee, Kwang-Won;Lim, Yong-Pyo;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Mushroom
    • /
    • v.10 no.4
    • /
    • pp.151-159
    • /
    • 2012
  • The button mushroom (Agaricus bisporus) is one of the most widely cultivated important edible mushroom species. In the breeding of new button mushroom, 'Seolgang' was developed by crossing two monokaryons 'CM020913-27' and 'SSU423-31'. Because of the secondarily homothallism, only a small percentage of the basidia produce 3 or 4 spores, which are mostly haploid (n) and do not fruit. Single spore cultures derived from these types of spores produce a vegetative mycelium that also contain a variable number of genetically identical nuclei per cell called monokaryon. The lack of clamp connections between monokaryon and dikaryon required a series of mycelial culture and fruiting test. After crossing, hybrids were cultivated on a small scale and on a commercial scale at a farm. For this, the spawn was made by a commercial spawn producer and the spawned compost by a commercial compost producer. Mycelial growth of 'Seolgang' on CDA was better at $20^{\circ}C$ and $25^{\circ}C$ when it was compared with that of '505 Ho'. The mature cap shape of new strain 'Seolgang' is oblate spheroid and the immature cap shape is round to oblate spheroid. The cap diameter was 41.2 mm on average. In comparison with white strain '505 Ho', the strain had a yield that was 9% higher. It produced fruiting bodies which had a higher weight on average per fruiting body and were 19% firmer with a good shelf life. Days of fruiting body were 3-4 days later than those of '505 Ho'. The physical characteristics such as elasticity, chewiness, adhesiveness were better than that of '505 Ho'. Genetic analysis of the new strain 'Seolgang' showed different profiles compared to '505 Ho', CM02913-27, SSU413-31, when RAPD primers A02 and O04 were used.

Localization Scheme with Mobile Beacons in Ocean Sensor Networks (모바일 비콘을 이용한 해양 센서 네트워크의 위치 파악 기법)

  • Lee, Sang-Ho;Kim, Eun-Chan;Kim, Chung-San;Kim, Ki-Seon;Choi, Yeong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1128-1134
    • /
    • 2007
  • Recently, sensor network technology is a highly concerned area due to the expectation of many applications in various fields. The application of sensor network technology to the marine and ocean surveillance and investigation makes the marine environmental research easier since intelligent sensor nodes substitute the human labor work. In ocean sensor network, the localization scheme for the sensor nodes is most essential because all the information without from sensor nodes might be useless unless the positional information of each sensor nodes is provided. In this paper, the localization scheme with mobile beacons in ocean sensor networks is suggested and showed it could be effective for applying to marine circumstances. Even though the previous localization scheme(Ssu's) has advantages that additional hardware is not required for obtaining the information of distance and angle and shows the high accuracy of location and energy efficiency and easy expandability as well, it has also demerits the location error increases as the minimum distance between the absolute positional information become closer. In our works, the improved localization scheme with the presumed area of sensor node using geometric constraints is suggested.

  • PDF

Restriction Fragment Length Ploymorphism of PCR Amplified Ribosomal DNA Among Korean Isolates of Phytophthora

  • Hong, Seung-Beom;Jee, Hyeong-Jin;Lee, Seung-Im;Go, Seung-Joo
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.228-235
    • /
    • 1999
  • Genetic diversity of ninety-five Korean isolates of Phytophthora was investigated on the basis of PCR-RFLP of ribosomal DNA. The isolates were previously identified as following fifteen species by mycological and cultural characteristics; P. boehmeriae, P. cactorum, P. cambivora, P. capsici, P. cinnamoni, P. citricola, P. citrophthora, P. cryptogea, P. drechsleri, P. erythroseptica, P. infestans, P. megasperma, P. nicotianae, P. palmivora and P. sojae. The regions of small subunit (SSU) and internal transcribed spacer (ITS) of rDNA were amplified with primer pair, NS1 and ITS4, by polymerase chain reaction (PCR) and digested with nine restriction enzymes. P. boehmeriae, P. cactorum, P. cambivora, P. capsici, P. cinnamomi, P. citricola, P. citrphthora, P. infestans, P. nicotianae and P. palmivora showed specific band patterns for each species. However, P. sojae and P. erythroseptica presented identical band patterns and P. cryptogea, P. drechsleri and P. megasperma were divided into six groups, which were not compatible with delineation of the species. A group originated from cucurbits showed distinct band patterns from other groups, but the other five groups were closely related within 96.0% similarity, forming one complex group. Consequently, Korean isolates of Phytophthora were divided into thirteen genetic groups and each group was readily differentiated by comparing digestion patterns of AvaII, HaeIII, MboI, HhaI and MspI. Therefore, PCR-RFLP of rDNA using the five enzymes can be used to differentiate or identify the Phytophthora species reported in Korea so far.

  • PDF

Restriction Analyses of PCR Amplified Partial SSU Ribosomal DNA to Distinguish Arbuscular Mycorrhizal Fungi from Other Fungi Colonizing Plant Roots

  • Lee, Jae-Koo;Tae, Moon-Sung;Eom, Ahn-Heum;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.31 no.2
    • /
    • pp.68-73
    • /
    • 2003
  • Roots of Glycine max and Miscanthus sinensis and soil samples were collected from various field sites at Goesan, Chungbuk in Korea. Microscopic observations of the roots indicated high colonization rates of both arbuscular mycorrhizal fungi(AMF) and other fungi. The partial small subunit of ribosomal DNA genes were amplified with the genomic DNA extracted from their roots by nested polymerase chain reaction(PCR) with universal primer NS1 and fungal specific primers AML Restriction fragment length polymorphism(RFLP) was analyzed using the combinations of three restriction enzymes, HinfI, AluI and AsuC21. Nucleotides sequence analysis revealed that ten sequences from Miscanthus sinensis and one sequence from Glycine max were close to those of arbuscular mycorrhizal fungi. Also, 33% of total clones amplified with NS31-AM1 primers from M. sinensis and 97% from G. max were close to Fusarium oxysporum or other pathogenic fungi, and they were successfully distinguished from AME Results suggested that these techniques could help to distinguish arbuscular mycorrhizal fungi from root pathogenic fungi in the plant roots. Especially, DNA amplified by these primers showed distinct polymorphisms between AMF and plant pathogenic species of Fusarium when digested with AsuC21.

Sequence Analysis of Nuclear 18s rDNA from Porphyra dentata (Rhodophyta) in Korea (한국산 잇바디돌김 (Porphyra dentata)의 핵 18S rDNA 염기선열 분석)

  • Long-Guo Jin
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.427-432
    • /
    • 2002
  • Nuclear 18S ribosomal RNA gene (18S rDNA or SSU rDNA) from the Porphyra dentata tissue was amplified and sequenced. Complete 18S rDNA has an 1822 bp exon and a 512 bp intron. The G+C contents of exon and intron were 49% and 55%, respectively. The exon sequence showed 97.1% homology to the GenBank accession number AB013183 of the Japanese P. dentata. The intron region that is inserted in upstream between 568 and 569 showed 52.1% homology to the AB013183.