• Title/Summary/Keyword: SSN

Search Result 95, Processing Time 0.032 seconds

Research on Possibilies of Social Network Services through IPTV (IPTV를 통한 SNS 가능성에 관한 연구)

  • Kim, Hyun-Suk;Kim, So-Hyun
    • Journal of the HCI Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2009
  • Social Network Service has been extremely popular these days and providing diverse features and functions to users. Social networking and interest sharing in between users are key factors of SNS and this circles back to draw more users to the service. Web is the first media to provide SNS and mobile is the next. The service based on mobile environmental uniqueness such as Location-based-service(LBS) is the key success factors to convert users to web SNS to mobile SNS. TV has also been a possible SSN market to draw users to share interests and participation. However TV has been always community electronics in family members and personalization to provide SNS has been barrier to overcome. In this study, we explorer ideas of key factors of personalization in TV environment and conducted a field study to define characteristics of TV personalization in terms of depth, method, style and structure. Research finds out that there are significant differences in these categories.

  • PDF

Design of L-Band-Phased Array Radar System for Space Situational Awareness (우주감시를 위한 L-Band 위상배열레이다 시스템 설계)

  • Lee, Jonghyun;Choi, Eun Jung;Moon, Hyun-Wook;Park, Joontae;Cho, Sungki;Park, Jang Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.214-224
    • /
    • 2018
  • Continuous space development increases the occurrence probability of space hazards such as collapse of a satellite and collision between a satellite and space debris. In Korea, a space surveillance network with optical system has been developed; however, the radar technology for an independent space surveillance needs to be secured. Herein, an L-band phased array radar system for the detection and tracking of space objects is proposed to provide a number of services including collision avoidance and the prediction of re-entry events. With the mission analysis of space surveillance and the case analysis of foreign advanced radar systems, the radar parameters are defined and designed. The proposed radar system is able to detect a debris having a diameter of 10 cm at a maximum distance of 1,576 km. In addition, we confirmed the possibility of using the space surveillance mission for domestic satellites through the analysis of the detection area.

North Korea's Nuclear Strategy and SLBM Development (북한 SLBM 개발과 핵전략 : 해군력 건설 방향과 한미 해군협력)

  • Oh, Soon-Kun
    • Strategy21
    • /
    • s.41
    • /
    • pp.333-370
    • /
    • 2017
  • 북한의 SLBM 위협이 대한민국 안보에 미치는 영향에 대해 그동안 많은 논의가 있어 왔지만, 북의 잠수함에서 발사하는 탄도미사일이 보유한 진정한 위협에 대한 인식은 아직도 부족한 듯하다. 그 이유는 대부분의 논의가 북 SLBM 기술의 성숙도와 완성시기 등 기술적 수준에 관심이 치우쳐져 있기 때문이다. 핵전략과 억제전략의 관점에서 본다면 북한의 SLBM 개발은 한미동맹의 제1격에 대한 완벽한 제2격 능력 보유에 그 핵심이 있다. 즉 향후 개발될 북한의 SLBM은 평양 김정은 정권의 생존을 보장할 직접적이고 핵심적인 전력이 될 것이다. 이는 궁극적으로 한미 군사동맹과 북한의 현 군사력 균형을 깨뜨리고 앞으로 북의 군사도발 가능성을 더욱 높이는 결과를 가지고 올 것이다. 북의 핵전략은 현재 확증보복(assured retaliation) 단계로 발전하고 있으며, 결국에는 전쟁에 사용될 전술적 핵무기 능력(war-fighting capability)을 갖게 될 것이다. 이에 대한민국 해군은 우리의 강점을 활용하여 적의 약점을 공략할 수 있는 상쇄전략(offset strategy)을 개발하여야 한다. 북한의 현 제한된 잠수함 기술력과 대잠작전 능력을 고려할 때 한국해군은 수중영역에서의 공세적 대잠전(offensive ASW) 개념을 보다 발전시켜야만 할 것이다. 이는 미 해군이 냉전기간 중 소련해군 핵추진전략잠수함(SSBN) 대응을 위해 발전시킨 전략대잠전(strategic ASW) 개념에서 교훈을 얻을 수 있다. 미 해군은 소련 해군의 SSBN 을 억제하기 위해 공세적인 전략대잠전을 수행했고 그 결과 소련해군은 자국의 연안에서 벗어나지 못하는 요새전략(bastion strategy)를 추구할 수밖에 없었다. 당시 미 해군의 전략대잠전은 공격잠수함(SSN), 대잠초계기, 수중 탐지체계(SOSUS), 공격기뢰 등의 전력으로 구성되었다. 따라서 북한 SLBM 에 대한 한국해군의 전략개념은 북의 핵전략(제 2 격능력)을 억제하는 방향으로 정립되어야 하며, 이를 위한 해군력 건설은 대잠전 능력 강화에 초점을 맞추어야 한다. 우리 해군은 장기적으로 핵추진잠수함을 비롯하여 성능이 향상된 대잠초계기, 한반도 해역을 중심으로 한 미 해군의 SOSUS 와 유사한 수중탐지장비 그리고 장시간 수중작전이 가능한 무인잠수정(UUV)을 도입해야만 한다. 단기적으로는 현재 추진되고 있는KAMD 체계에 SM-3 를 보유한 이지스함을 포함시켜, 북 SLBM 에 대한 요격능력을 강화해야 할 것이다. 한미동맹은 북 핵전략의 핵심전력인 SLBM 개발에 대한 위협인식을 공유해야만 하다. 작전적 수준에서는 양국 해군 간 대잠전 및 대유도탄전 작전운용성 증대에 우선순위를 두고, 기존의 한미 간 연합작전능력 강화뿐 아니라 위기시를 대비하여 미일 간 구축되어 있는 대잠전 및 대유도탄전 능력도 활용할 필요가 있을 것이다.

Technical and Policy Lessons for the Domestic Future Nuclear-powered Submarine learned from the U.S. Naval Nuclear Propulsion Program (미해군 원자력추진 프로그램으로부터 얻은 미래 원자력추진 잠수함 확보를 위한 기술 및 정책적 교훈)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.142-149
    • /
    • 2019
  • In the early 2000s, the Korean government first attempted to acquire nuclear-powered submarines as strategic assets. Acquisition of nuclear-powered submarines must overcome the challenges of the initial costs and operating costs of trillions of US dollars per ship, must be agreed to by the international community (including neighboring countries) and in a national consensus, and must have an established technical infrastructure (including manpower). The US navy has been working with governments that want to acquire nuclear propulsion warships since the 1950s, and in 1982, they enacted an executive order called the United States Naval Nuclear Propulsion Program to consolidate efforts and prepare for the future, which sets out the organizational structure, authority, and responsibilities of US governmental management, and integrates national efforts. This paper is to gain valuable wisdom from the U.S. Naval Nuclear Propulsion Program by analyzing all of its histories and contributions, thereby providing valuable lessons for a future program in Korea. It might not be possible to follow the U.S.A. one-on-one because of the scale of national and military forces, but at least we can avoid time and effort spent on trial and error.

The Role of the Soft Law for Space Debris Mitigation in International Law (국제법상 우주폐기물감축 연성법의 역할에 관한 연구)

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.469-497
    • /
    • 2015
  • In 2009 Iridium 33, a satellite owned by the American Iridium Communications Inc. and Kosmos-2251, a satellite owned by the Russian Space Forces, collided at a speed of 42,120 km/h and an altitude of 789 kilometers above the Taymyr Peninsula in Siberia. NASA estimated that the satellite collision had created approximately 1,000 pieces of debris larger than 10 centimeters, in addition to many smaller ones. By July 2011, the U.S. Space Surveillance Network(SSN) had catalogued over 2,000 large debris fragments. On January 11, 2007 China conducted a test on its anti-satellite missile. A Chinese weather satellite, the FY-1C polar orbit satellite, was destroyed by the missile that was launched using a multistage solid-fuel. The test was unprecedented for having created a record amount of debris. At least 2,317 pieces of trackable size (i.e. of golf ball size or larger) and an estimated 150,000 particles were generated as a result. As far as the Space Treaties such as 1967 Outer Space Treaty, 1968 Rescue Agreement, 1972 Liability Convention, 1975 Registration Convention and 1979 Moon Agreement are concerned, few provisions addressing the space environment and debris in space can be found. In the early years of space exploration dating back to the late 1950s, the focus of international law was on the establishment of a basic set of rules on the activities undertaken by various states in outer space.. Consequently environmental issues, including those of space debris, did not receive the priority they deserve when international space law was originally drafted. As shown in the case of the 1978 "Cosmos 954 Incident" between Canada and USSR, the two parties settled it by the memorandum between two nations not by the Space Treaties to which they are parties. In 1994 the 66th conference of International Law Association(ILA) adopted "International Instrument on the Protection of the Environment from Damage Caused by Space Debris". The Inter-Agency Space Debris Coordination Committee(IADC) issued some guidelines for the space debris which were the basis of "the UN Space Debris Mitigation Guidelines" which had been approved by the Committee on the Peaceful Uses of Outer Space(COPUOS) in its 527th meeting. On December 21 2007 this guideline was approved by UNGA Resolution 62/217. The EU has proposed an "International Code of Conduct for Outer Space Activities" as a transparency and confidence-building measure. It was only in 2010 that the Scientific and Technical Subcommittee began considering as an agenda item the long-term sustainability of outer space. A Working Group on the Long-term Sustainability of Outer Space Activities was established, the objectives of which include identifying areas of concern for the long-term sustainability of outer space activities, proposing measures that could enhance sustainability, and producing voluntary guidelines to reduce risks to long-term sustainability. By this effort "Guidelines on the Long-term Sustainability of Outer Space Activities" are being under consideration. In the case of "Declaration of Legal Principles Governing the Activities of States in the Exp1oration and Use of Outer Space" adopted by UNGA Resolution 1962(XVIII), December 13 1963, the 9 principles proclaimed in that Declaration, although all of them incorporated in the Space Treaties, could be regarded as customary international law binding all states considering the time and opinio juris by the responses of the world. Although the soft law such as resolutions, guidelines are not binding law, there are some provisions which have a fundamentally norm-creating character and customary international law. In November 12 1974 UN General Assembly recalled through a Resolution 3232(XXIX) "Review of the role of International Court of Justice" that the development of international law may be reflected, inter alia, by the declarations and resolutions of the General Assembly which may to that extend be taken into consideration by the judgements of the International Court of Justice. We are expecting COPUOS which gave birth 5 Space Treaties that it could give us binding space debris mitigation measures to be implemented based on space debris mitigation soft law in the near future.