• Title/Summary/Keyword: SSIM(Structural Similarity)

Search Result 81, Processing Time 0.022 seconds

2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge (Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.827-833
    • /
    • 2012
  • In this paper, we propose an improved optical flow algorithm which reduces computational complexity as well as noise level. This algorithm reduces computational time by applying level simplification technique and removes noise by using eigenvectors of objects. Optical flow is one of the accurate algorithms used to generate depth information from two image frames using the vectors which track the motions of pixels. This technique, however, has disadvantage of taking very long computational time because of the pixel-based calculation and can cause some noise problems. The level simplifying technique is applied to reduce the computational time, and the noise is removed by applying optical flow only to the area of having eigenvector, then using the edge image to generate the depth information of background area. Three-dimensional images were created from two-dimensional images using the proposed method which generates the depth information first and then converts into three-dimensional image using the depth information and DIBR(Depth Image Based Rendering) technique. The error rate was obtained using the SSIM(Structural SIMilarity index).

Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis (손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구)

  • Han, Hyun-Ho;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

Reduced-Reference Quality Assessment for Compressed Videos Based on the Similarity Measure of Edge Projections (에지 투영의 유사도를 이용한 압축된 영상에 대한 Reduced-Reference 화질 평가)

  • Kim, Dong-O;Park, Rae-Hong;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.37-45
    • /
    • 2008
  • Quality assessment ai s to evaluate if a distorted image or video has a good quality by measuring the difference between the original and distorted images or videos. In this paper, to assess the visual qualify of a distorted image or video, visual features of the distorted image are compared with those of the original image instead of the direct comparison of the distorted image with the original image. We use edge projections from two images as features, where the edge projection can be easily obtained by projecting edge pixels in an edge map along vertical/horizontal direction. In this paper, edge projections are obtained by using vertical/horizontal directions of gradients as well as the magnitude of each gradient. Experimental results show the effectiveness of the proposed quality assessment through the comparison with conventional quality assessment algorithms such as structural similarity(SSIM), edge peak signal-to-noise ratio(EPSNR), and edge histogram descriptor(EHD) methods.

Two-Step Rate Distortion Optimization Algorithm for High Efficiency Video Coding

  • Goswami, Kalyan;Lee, Dae Yeol;Kim, Jongho;Jeong, Seyoon;Kim, Hui Yong;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) is the newest video coding standard for improvement in video data compression. This new standard provides a significant improvement in picture quality, especially for high-resolution videos. A quadtree-based structure is created for the encoding and decoding processes and the rate-distortion (RD) cost is calculated for all possible dimensions of coding units in the quadtree. To get the best combination of the block an optimization process is performed in the encoder, called rate distortion optimization (RDO). In this work we are proposing a novel approach to enhance the overall RDO process of HEVC encoder. The proposed algorithm is performed in two steps. In the first step, like HEVC, it performs general rate distortion optimization. The second step is an extra checking where a SSIM based cost is evaluated. Moreover, a fast SSIM (FSSIM) calculation technique is also proposed in this paper.

Joint Spatial-Temporal Quality Improvement Scheme for H.264 Low Bit Rate Video Coding via Adaptive Frameskip

  • Cui, Ziguan;Gan, Zongliang;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.426-445
    • /
    • 2012
  • Conventional rate control (RC) schemes for H.264 video coding usually regulate output bit rate to match channel bandwidth by adjusting quantization parameter (QP) at fixed full frame rate, and the passive frame skipping to avoid buffer overflow usually occurs when scene changes or high motions exist in video sequences especially at low bit rate, which degrades spatial-temporal quality and causes jerky effect. In this paper, an active content adaptive frame skipping scheme is proposed instead of passive methods, which skips subjectively trivial frames by structural similarity (SSIM) measurement between the original frame and the interpolated frame via motion vector (MV) copy scheme. The saved bits from skipped frames are allocated to coded key ones to enhance their spatial quality, and the skipped frames are well recovered based on MV copy scheme from adjacent key ones at the decoder side to maintain constant frame rate. Experimental results show that the proposed active SSIM-based frameskip scheme acquires better and more consistent spatial-temporal quality both in objective (PSNR) and subjective (SSIM) sense with low complexity compared to classic fixed frame rate control method JVT-G012 and prior objective metric based frameskip method.

A Tracking Method of Same Drug Sales Accounts through Similarity Analysis of Instagram Profiles and Posts

  • Eun-Young Park;Jiyeon Kim;Chang-Hoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.109-118
    • /
    • 2024
  • With the increasing number of social media users worldwide, cases of social media being abused to perpetrate various crimes are increasing. Specifically, drug distribution through social media is emerging as a serious social problem. Using social media channels, the curiosity of teenagers regarding drugs is stimulated through clever marketing. Further, social media easily facilitates drug purchases due to the high accessibility of drug sellers and consumers. Among various social media platforms, we focused on Instagram, which is the most used social media platform by young adults aged 19 to 24 years in South Korea. We collected four types of information, including profile photos, introductions, posts in the form of images, and posts in the form of texts on Instagram; then, we analyzed the similarity among each type of collected information. The profile photos and posts in the form of image were analyzed for similarity based on the SSIM(Structural Simplicity Index Measure), while introductions and posts in the form of text were analyzed for similarity using Jaccard and Cosine similarity techniques. Through the similarity analysis, the similarity among various accounts for each collected information type was measured, and accounts with similarity above the significance level were determined as the same drug sales account. By performing logistic regression analysis on the aforementioned information types, we confirmed that except posts in image form, profile photos, introductions, and posts in the text form were valid information for tracking the same drug sales account.

A system design for textile defect detection using pattern matching (패턴매칭을 이용한 섬유결함 검출시스템의 설계)

  • Kang, Hyunsoo;Kim, Jongjun;Song, Nagun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.474-477
    • /
    • 2010
  • 본 논문에서는 패턴인식을 이용한 의류의 결함을 자동으로 탐색하는 시스템을 설계하였다. 이는 히스토그램을 기반으로 하여 영상의 특징을 추출하고 템플릿 매칭을 이용해서 패턴을 추적하도록 하였스며, 또한, SSIM(Structural Similarity) Index를 통해 추적된 패턴과 원 패턴의 유사도를 HVS(Human Vision System)을 기준으로 하여 결함을 판별할수 있도록 하였다.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.