• Title/Summary/Keyword: SSD-OFDM

Search Result 3, Processing Time 0.019 seconds

Combination System Design of 5G Candidate Modulation and Full Duplex Communication for the Spectrum Efficiency Enhancement (스펙트럼 효율 향상을 위한 전이중 통신 방식과 5G 후보 변조기술과의 결합시스템 설계)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.369-376
    • /
    • 2016
  • In this paper, we propose and design a SSD(Simultaneous Single band Duplex) system using 5G(Generation) candidate modulations. Especially, we consider HPA(High Power Amplifier) nonlinearity in the proposed system. And then, we evaluate and analyze performance of the proposed system. As simulation results, performance of SSD-OFDM(Orthogonal Frequency Division Multiplexing), SSD-FMC (Universal Filtered Multi-Carrier), and SSD-FBMC(Filter Bank Multi-Carrier) is severely degraded by HPA nonlinearity. However, performance of SSD-OFDM, SSD-UFMC, and SSD-FBMC is similar in the same condition. That is, OFDM, UFMC, and FBMC have a similar PAPR(Peak to Average Power Ratio) characteristic. Finally, we can confirm that the proposed SSD system can not cancel(SI) self-interference effectively by strong HPA nonlinearity. That is, Reducing PAPR is important in order to avoid effect of HPA nonlinearity in the proposed SSD system.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

On the Gain of Component-Swapping Technique with DVB-T2 16K LDPC Codes in MIMO-OFDM Systems (DVB-T2 16K LDPC 부호가 적용된 MIMO-OFDM 시스템에서의 성분 맞교환 기술 이득)

  • Jeon, Sung-Ho;Yim, Zung-Kon;Kyung, Il-Soo;Kim, Man-Sik
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.749-756
    • /
    • 2010
  • The signal space diversity is one of the promising transmission techniques in next generation mobile TV service. However, DVB-T2 does not consider the multiple antennas (MIMO) so that the cyclic Q-delay method, a component interleaver in DVB-T2, causes a critical issue in detecting symbols at the receiver side by increasing the inter-symbol dependency. To solve this problem, the component-swapping technique is proposed, which limits the inter-symbol dependency in order to reduce detection complexity. In this paper, the achievable gain of a component-swapping technique combined with 16K LDPC code defined in DVB-T2 is evaluated by computer simulations. From the results, the gain is confirmed in terms of BER and receive complexity compared to legacy component interleaver methods.