• Title/Summary/Keyword: SSC

Search Result 451, Processing Time 0.025 seconds

Shoot Growth and Fruit Characteristics of 'Soomee' Peach according to Length of Fruit Bearing Branch (결과지 길이에 따른 복숭아 '수미'의 신초 생장 및 과실 특성)

  • Kim, Ho Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.347-352
    • /
    • 2019
  • We analyzed the correlation among fruit bearing branch (FBB) and shoot and fruit characteristics in order to select the length of FBB suitable for producing high-quality fruits of 'Soomee', a peach tree developed in Korea. The length and diameter of FBB were 26.1 cm and 6.1 mm, respectively, shoot and leaf number per FBB were 3.2 and 38.6, respectively. Of these, the coefficient of variation was very high in the shoots and leaf number. The average weight and soluble solid content (SSC) of fruit were 298.6 g and 12.2 Brix, respectively, and coefficient of variation of the fruit weight was 18.0 %, which was higher than that of SSC. As the FBB of 10-20 cm and 20-30 cm length per tree were 27.1 % and 25.4 %, respectively, the sum of short and middle FBB frequency per tree was more than 50 %. Fruits of 250-350 g and 11.0-13.0 Brix per tree were distributed in 68.6 % and 74.0 %, respectively. As a result of correlation analysis, fruit weight and shoot number were affected by the length of FBB. In particular, length of FBB showed the relation of fruit weight with $y=-0.0482x^2+2.4512x+277.36$. As a result, the length of FBB that can maximize fruit weight was analyzed as 25.4 cm. Therefore, in the filed, the suitable FBB for producing 'Soomee' peach is estimated to be about 20-30 cm.

Changes in Quality Characteristics of Dried 'Bansi' and 'Godongsi' Persimmon During Drying Period by Hot-air Drying (열풍건조에 의한 건조기간 동안 '반시'와 '고동시'의 품질 특성 변화)

  • Kim, Chul-Woo;Park, Hyowon;Na, Min-Ho;Lee, Uk
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.244-253
    • /
    • 2021
  • This study aimed to investigate quality characteristics of hot-air dried persimmon during the drying period in 'Bansi' and 'Godongsi'. These cultivars were classified into four grades: 2L, L, M, and S based on the fruit weight. Weight loss, firmness, soluble solid content (SSC), and moisture contents were measured during the hot-air drying period. The weight loss significantly increased during the drying period (p<0.05), while there was no difference between cultivars. In the initial drying period, the firmness decreased due to softening during the ripening stage and increased significantly due to hardening during the water loss stage. Regardless of the cultivars, the SSC increased from 19.6% in the initial period to 55.3% at 12 days after drying. Moisture content statistically decreased in both cultivars over the whole drying period. It took 4 days and 8~10 days to produce semi-dried persimmon (45~55% moisture content) and dried persimmon (25~35% moisture content) in both cultivars. These results could be effectively used as basic data for producing high-quality semi-dried and dried persimmons using the hot-air drying method in 'Bansi' and 'Godongsi'.

Effects of different culture systems on the culture of prepuberal buffalo (Bubalus bubalis) spermatogonial stem cell-like cells in vitro

  • Li, Ting-Ting;Geng, Shuang-Shuang;Xu, Hui-Yan;Luo, Ao-Lin;Zhao, Peng-Wei;Yang, Huan;Liang, Xing-Wei;Lu, Yang-Qing;Yang, Xiao-Gan;Lu, Ke-Huan
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.13.1-13.14
    • /
    • 2020
  • Currently, the systems for culturing buffalo spermatogonial stem cells (SSCs) in vitro are varied, and their effects are still inconclusive. In this study, we compared the effects of culture systems with undefined (foetal bovine serum) and defined (KnockOut Serum Replacement) materials on the in vitro culture of buffalo SSC-like cells. Significantly more DDX4- and UCHL1-positive cells (cultured for 2 days at passage 2) were observed in the defined materials culture system than in the undefined materials system (p < 0.01), and these cells were maintained for a longer period than those in the culture system with undefined materials (10 days vs. 6 days). Furthermore, NANOS2 (p < 0.05), DDX4 (p < 0.01) and UCHL1 (p < 0.05) were expressed at significantly higher levels in the culture system with defined materials than in that with undefined materials. Induction with retinoic acid was used to verify that the cultured cells maintained SSC characteristics, revealing an SCP3+ subset in the cells cultured in the defined materials system. The expression levels of Stra8 (p < 0.05) and Rec8 (p < 0.01) were significantly increased, and the expression levels of ZBTB16 (p < 0.01) and DDX4 (p < 0.05) were significantly decreased. These findings provided a clearer research platform for exploring the mechanism of buffalo SSCs in vitro.

Fruit Morphology, Citrulline, and Arginine Levels in Diverse Watermelon (Citrullus lanatus) Germplasm Collections

  • Awraris Derbie Assefa;On-Sook Hur;Na-Young Ro;Jae-Eun Lee;Ae-Jin Hwang;Bit-Sam Kim;Ju-hee Rhee;Jung Yoon Yi;Ji Hyun Kim;Ho-Sun Lee;Jung-Sook Sung;Myung-Kon Kim;Jae-Jong Noh
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.33-33
    • /
    • 2020
  • Watermelon (Citrullus lanatus) is a non-seasonal, economically important, cucurbit cultivated throughout the world with Asia as a continent contributing the most. As part of the effort in diversifying watermelon genetic resources in the already cultivated group, this study was devoted to providing baseline data on morphological quality traits and health-beneficial phytonutrients of watermelon germplasm collections, thereby promoting watermelon research and cultivation programs. To this end, we reported morphological traits, citrulline, and arginine levels of watermelon genetic resources obtained from the gene bank of Agrobiodiversity Center, Republic of Korea, and discussed the relationship between each other. Diverse characteristics were observed among many of the traits. But, most of the genetic resources (>90%) were either red or pink-fleshed. Korean origin fruits contained intermediate levels of soluble solid content (SSC) while The USA, Russian, Tajikistan, Turkmenistan, Taiwan, and Uruguay originated had generally the highest levels of soluble solids. The citrulline and arginine contents using HPLC method were ranged from 6.9 to 52.1 mg/g (average, 27.3 mg/g) and 1.8 to 21.3 mg/g (average, 9.8 mg/g), respectively. The citrulline content determined using Citrulline Assay Kit was ranged from 6.5 to 42.8 mg/g (average, 27.0 mg/g). Resources with high citrulline and arginine levels contained low SSC. Whereas, red- and pink-colored flesh samples had less citrulline compared to yellow and orange. In addition to the profiling of morphological characters and phytonutrients, molecular marker characterization and identification of sources of resistance to diseases and pests are recommended for a more complete diversity analysis of watermelon genetic resources.

  • PDF

Effect of Shading on Japanese Apricot Fruit Yield and Quality (차광이 매실의 수량 및 품질에 미치는 영향)

  • Jung Gun Cho;Sung Ku Kang;Seung Heui Kim;Sang Kun Park;Yong Bum Kwack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.84-89
    • /
    • 2024
  • Light is an important component among which plays a crucial role in determining the production and quality of fruit trees. Since the disturbance of light directly leads to reduced photosynthetic efficiency, their damage can be increased especially in fruit trees such as Japanese apricots with a short growing time. In this study, we investigated how the effects of shading condition can affect the production and quality of Japanese apricots according to increased damages by light disturbance in the main orchard complex. The average photosynthetically active radiation (PAR) level in Japanese apricots was rapidly dropped as the shading time was increased compared to the control (304 μmol/m2/s) and the PAR level decreased to 142 μmol/m2/s after shaded for eight hours. The maximum photosynthetic efficiency, with a PAR value of 900 to 1,000 μmol/m2/s, corresponds to the time period without shading and the time period with 2 hours of shading, and these times range from 11 a.m. to 3 p.m. And the time period for shading for 4 hours was from 1:00 p.m. to 2:00 p.m., and under conditions of shading for 6 and 8 hours, the effect was a low amount of light. There was no difference in the weight of Japanese apricots during 2 hours shading time, however, it was significantly reduced as shading time were increased. The difference of the acid content and L/D ratio was not significant on shading time, but the SSC was decreased as times going on. In conclusion, our results indicate that the shading for more than 2 hours make negative effects to decrease the weight and SSC and the yield and affects directly to drop in fruit quality.

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • Ito, Eisuke;Gang, Hun-Gu;Ito, Hiromi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

Spread Spectrum Clock Generator with Multi Modulation Rate Using DLL (Delay Locked Loop) (DLL을 이용한 다중 변조 비율 확산대역클록 발생기)

  • Shin, Dae-Jung;Yu, Byeong-Jae;Kim, Tae-Jin;Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • This paper describes design and implementation of a spread spectrum clock generator(SSCG). The proposed architecture generates the spread spectrum clock controlling a input voltage signal for VCDL(Voltage Controlled Delay Line). Spread charge pump is controlled by the SSC modulation logic block provides a control signal to VCDL through LPF in DLL. By using this architecture, chip area and power consumption can be reduced because it is not necessary additional circuit to control modulation rate. This circuit has been designed and fabricated using the UMC 0.25um CMOS technology. The chip occupies an area of 290${\times}$120um^2.

A Kinetic Analysis of the Side Propulsion Task with Preparatory Motions (사전 동작을 이용한 좌우 추진 과제의 운동역학적 분석)

  • Kim, Yong-Woon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2007
  • The purpose of this study was to find the most effective movement pattern from three different types of preparatory movement(squat, countermovement and hopping) in sideward responsive propulsion task, which had the time constraint to complete the performance. 7 healthy subjects participated in left and right side movement task by an external signal, which required the subject to perform the task as fast as possible. Mechanical output and joint kinetics focusing on the lower extremities were analyzed. The results were as follows. In spite of the shortest duration in propulsive phase, the hopping condition showed no difference with other conditions in the work output done and take-off velocity. It resulted from the greatest power output generated during the propulsive phase. A significant difference was found for joint moment and joint power according to the movement conditions. The joint moment and joint power for the countermovement and hopping conditions were larger than those in the squat condition. This was speculated to be due to the extra power that could be generated by the pre-stretch of muscle in preparation for the propulsion. The hopping condition which had substantially more pre-stretch load in the preparatory eccentric phase produced considerably more power than countermovement condition in the propulsive concentric phase. Furthermore during the hopping a large amount of joint moment and joint power could be produced in a shorter time. Therefore it was deemed that the hopping movement is an effective type of preparatory movement which takes much more advantage of the pre-stretch than any other movement.

Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell (고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성)

  • Baek, Seung-Wook;Kim, Jung-Hyun;Baek, Seung-Whan;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.