• Title/Summary/Keyword: SRY Gene

Search Result 44, Processing Time 0.025 seconds

Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction

  • Khamlor, Trisadee;Pongpiachan, Petai;Sangsritavong, Siwat;Chokesajjawatee, Nipa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1411-1416
    • /
    • 2014
  • Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR) assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP) gene and sex-determining region Y (SRY) were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99%) comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05). The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90%) as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

Prenatal diagnosis of an unbalanced translocation between chromosome Y and chromosome 15 in a female fetus

  • Lee, Dongsook;Park, Heeju;Kwak, Sanha;Lee, Soomin;Go, Sanghee;Park, Sohyun;Jo, Sukyung;Kim, Kichul;Lee, Seunggwan;Hwang, Doyeong
    • Journal of Genetic Medicine
    • /
    • v.13 no.2
    • /
    • pp.95-98
    • /
    • 2016
  • We report the prenatal diagnosis of an unbalanced translocation between chromosome Y and chromosome 15 in a female fetus. Cytogenetic analysis of parental chromosomes revealed that the mother had a normal 46,XX karyotype, whereas the father exhibited a 46,XY,der(15)t(Y;15) karyotype. We performed cytogenetic analysis of the father's family as a result of the father and confirmed the same karyotype in his mother and brother. Fluorescence in situ hybridization and quantitative fluorescent-polymerase chain reaction analysis identified the breakpoint and demonstrated the absence of the SRY gene in female members. Thus, the proband inherited this translocation from the father and grandmother. This makes the prediction of the fetal phenotype possible through assessing the grandmother. Therefore, we suggest that conventional cytogenetic and molecular cytogenetic methods, in combination with family history, provide informative results for prenatal diagnosis and prenatal genetic counseling.

Molecular Genetic Analysis of Microdeletions in Y Chromosome from Korean Male Infertility Patients (한국인 남성 불임환자에서 Y염색체내 미세결실의 분자유전학적 분석)

  • Yoon, Hyun-Soo;Lee, Jeong-Hen;Seo, Ju-Tae;Kim, Hae-Jung;Lee, Dong-Ryul;Jeon, Jong-Sik;Cho, Jung-Hyun;Kim, Moon-Kyoo;Lee, Moo-Sang;Roh, Sung-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.367-377
    • /
    • 1996
  • Genes on the long arm of Y chromosome, particularly interval 6, are believed to playa critical role in human spermatogenesis. The objective of this study was to validate a sequenced-tagged site(STS)-mapping strategy for the detection of Yq microdeletion and to use this method to determine the proportion of men with Yq microdeletions in idiopathic, obstructive, nonobstructive azoospermia, severe OATS and in normal males. We analyzed three STS markers mapped to interval 6 within long arm of the Y chromosome from 106 nonobstructive, 30 obstructive azoospermia, 15 severe OATS patients, and normal 42 males in Korean men. By PCR, we tested leukocyte DNA, for the presences of STS markers(DAZ, sY129 and sY134) and SRY gene as internal control. And PCR results were confirmed by Southern hybridization, and were investigated by SSCP analysis for DAZ gene mutation. None of 42 normal males and 30 obstructive azoospermia had microdeletions, Of the 15 severe OATS typed with DAZ, sY129 and sY134, 3(20.0%) patients failed to amplify 1 or more STS markers, and of the 106 nonobstructive azoospermia typed with DAZ, sY129 and sY134, 12(11.3%) patients failed to amplify 1 or more STS markers. From these results, high prevalence(12.4%) of Yq deletion(DAZ, sY129, sY134) in men with nonobstructive idopathic azoospermia and severe OATS were observed in Korean infertility patients. To avoid the infertile offspring by assisted reproductive technique using ICSI or ROSI, genetic diagnosis will be needed in IVF-ET program.

  • PDF

Effective Method for Extraction of Cell-Free DNA from Maternal Plasma for Non-Invasive First-Trimester Fetal Gender Determination: A Preliminary Study

  • Lim, Ji-Hyae;Park, So-Yeon;Kim, Shin-Young;Kim, Do-Jin;Kim, Mee-Jin;Yang, Jae-Hyug;Kim, Moon-Young;Kim, Min-Hyoung;Han, Ho-Won;Choi, Kyu-Hong;Ryu, Hyun-Mee
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2010
  • Purpose: To find the most effective method for extraction of cell-free DNA (cf-DNA) from maternal plasma, we compared a blood DNA extraction system (blood kit) and a viral DNA extraction system (viral kit) for non-invasive first-trimester fetal gender determination. Materials and Methods: A prospective cohort study was conducted with maternal plasma collected from 44 women in the first-trimester of pregnancy. The cf-DNA was extracted from maternal plasma using a blood kit and a viral kit. Quantitative fluorescent-polymerase chain reaction (QF-PCR) was used to detect the SRY gene and AMEL gene. The diagnostic accuracy of the QF-PCR results was determined based on comparison with the final delivery records. Results: A total of 44 women were tested, but the final delivery record was only obtained in 36 cases which included 16 male-bearing and 20 female-bearing pregnancies. For the blood kit and viral kit, the diagnostic accuracies for fetal gender determination were 63.9% (23/36) and 97.2% (35/36), respectively. Conclusion: In non-invasive first-trimester fetal gender determination by QF-PCR, using a viral kit for extraction of cf-DNA may result in a higher diagnostic accuracy.