• Title/Summary/Keyword: SRM analysis

Search Result 388, Processing Time 0.036 seconds

The Study of Two Phase SRM with No-Flux Reversal in the Stator (고정자에서 자속의 교번이 없는 2상 SRM의 특성에 관한 연구)

  • Oh, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.31-33
    • /
    • 2007
  • Cost reduction requires lowering number of power devices used in the converter driving SRM. This is quite feasible in SRM drive systems than in other drive systems. This paper deals with design, analysis, and simulation of such a novel two phase SRM. A novel two phase SRM has high performance, self-starting capability, high efficiency, and low manufacturing cost. Additionally, the stator back iron does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited leading to a greater reduction in core losses. The magnetic analysis and design considerations of the novel two phase SRM have been obtained by the finite element analysis (FEM). Experimental verification of the machine design is provided to correlate with analysis and simulation studies.

  • PDF

Design Using Finite Element Analysis of a Switched Reluctance Motor for Electric Vehicle

  • Ohyama Kazuhiro;Nashed Maged Naguib F.;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.163-171
    • /
    • 2006
  • In this paper, a Switched Reluctance Motor (SRM) employed in an electric vehicle (EV) is designed using the finite element method (FEM). The static torque of the SRM is estimated through magnetic field analysis. The SRM temperature rise over operation time is estimated through heat transfer analysis. First, static torque and temperature rise over the time of 600W SRM is included in the experiment set, and are compared with the calculated results using the FEM under the same conditions. The validity of the magnetic field analysis and heat transfer analysis is verified by the comparisons. In addition, a 60 [kW] SRM employed in an EV, whose output characteristics are equal to a 1500 [cc] gasoline engine, is designed under magnetic field analysis and heat transfer analysis.

The Study on Magnetic Characteristics of 2 Phase SRM with Self-Starting Capability (자기동이 가능한 2상 SRM의 자기적 특성에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.47-54
    • /
    • 2008
  • Cost reduction requires lowering number of power devices used in the converter driving SRM. This is quite feasible in SRM drive systems than in other drive systems. This paper deals with analysis and simulation of a novel two phase SRM. A novel two phase SRM has high performance, self-starling capability, high efficiency, and low manufacturing cost. Additionally, the stator back iron does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited leading to a greater reduction in core losses. The magnetic analysis and design considerations of the novel two phase SRM have been obtained by the finite element analysis (FEM).

Comparison and Analysis on magnetic structures of Switched Reluctance Motors (Switched Reluctance Motor의 자기적 구조에 대한 비교 해석)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • SRM is designed to meet operating standards such as low cost, simple magnetic structure, a desired operating speed range, high efficiency, high performance, and good matching for DC power. The magnetic flux of SRM is independent of its direction to develop a torque and it allows the flexible characteristics of the magnetic structure for SRM. In this paper, SRM can widely classify two types, Radial-Flux SRM and Axial-Flux SRM, according to the flux direction. Radial-Flux SRM includes Conventional, Segmented stator and rotor, and Double stator SRM, etc. and Axial-Flux SRM includes C-core stator and the Axial-airgap SRM. This paper is subjected the basic characteristics to select the best of the magnetic structure of SRM in the appropriate application by the classification of SRM.

Analysis and Improvement for Single 6/6 SRM with a Saturable Area (자기 포화 영역을 갖는 단상 6/6 SRM의 자기 구조 해석 및 개선)

  • Oh, Seok-Gyu
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.70-75
    • /
    • 2017
  • Single-phase SRM is cost competitive because it can reduce the number of switches for small, low-cost applications. However, since the single-phase SRM is difficult to start itself, methods for realizing self-starting by using auxiliary magnet or auxiliary pole have been studied. Recently, a method of self-starting by changing the shape of the rotor with a saturable area has been proposed. The purpose of this paper is to analyze the magnetic structure of single phase 6/6 SRM with a saturable rotor and to improve the magnetic structure of rotor with a saturable area. For this magnetic analysis, FLUX2D, a finite element method analysis program, was used.

A Study on the Structure characteristics of two phase 4/3 SRM (2상 4/3 SRM의 구조적 특성에 관한 연구)

  • Bae, Kang-Yul;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.115-121
    • /
    • 2014
  • The intrinsic simplicity, ruggedness, and simple power electronic drive requirement of a Switched Reluctance Motor(SRM) make it possible to use in many commercial adjustable speed application. The simple magnetic circuit results in a high efficiency drive and low temperature rise, and the drive system provides a good drive characteristics. This paper is provides two phase 4/3 SRM that is similar to two phase 6/3 SRM as aspect to magnetic structure. Although 6/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited, but two phase 4/3 SRM experiences a flux reversal in small part of stator yoke. The flux reversal in two phase 4/3 SRM could be relieved by an adjustment of stator yoke structure. The magnetic analysis and design considerations of the two phase 4/3 SRM have been obtained by the finite element method analysis (FEM).

Performance Analysis of Single-phase SRM Drive System with Single-stage Power Factor Correction (1단구조방식의 PFC회로를 갖는 단상 SRM 구동시스템의 특성해석)

  • Lee, Dong-Hee;Lee, Jin-Kuk;An, Young-Ju;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.328-339
    • /
    • 2006
  • In this paper the characteristic analysis of a single-phase switched reluctance motor (SRM) drive system with power factor correction (PFC) circuit is presented. The SRM is a low cost, simple and has a good high speed performance. The SRM drive with diode rectifier and filter capacitor has a low power factor because of short switch on time of capacitor. A novel switching topologic is presented to improve power factor and reduce torque ripple based on analysis of PFC circuit. Accordingly the SRM drive system with PFC circuit is also presented. Through the numerical analysis of the system, the toque ripple, power factor and efficiency with the change of rotary speed, load torque and capacity of the capacitor are achieved and compared with actual measured value.

SRM modeling and simulation of senserless speed control method using PI controller (PI 제어기를 이용한 센서리스 속도제어 방식의 SRM 모델링 및 시뮬레이션)

  • 최재동
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.525-528
    • /
    • 2000
  • This paper presents a circuit analysis and cotnrol example of favored configuration 6/4 SRM. SRM modeling and analysis are necessary for experiment. Thus this paper proposes a SRM modeling with PI controller (of driving converter) input voltage chopping and inductance profile when rotor position transformed. Through this simulation the designer can predict operating states of systems over a broad range of operating conditions.

  • PDF

A Characteristic Analysis of SRM for vehicle with Different Phase Number (전동차용 SRM의 상수변화에 따른 특성 해석)

  • Choi Kyeong-Ho;Kim Kyeong-Sik;Chin yung-Churl
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.981-984
    • /
    • 2004
  • This paper presents the design results and characteristic analysis of SRM. For vehicle power supply for adaptable design of the SRM, variable design parameters, such as stator and rotor laminations, winding details, pole numbers, and pole arcs, phases numbers are required. So, in this paper the SRM design results and the comparison of characteristics for vehicle power supply as phases changed are described.

  • PDF

Simulation and Experimentals of a Bi-Directional Converter with Input PFC on SRM System

  • Maged Maged N.F.
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.121-130
    • /
    • 2006
  • This paper presents the performance and efficiency of a drive system incorporating a switched-reluctance motor (SRM) with input power factor correction (PFC). The proposed system consists of a PFC, bi-directional converter, an inverter, and a SRM operating as based voltage source drives (VSD). First, theoretical analysis is made for each identified mode of operation in the drive system. This is followed by comparing the performance of the SRM drive system with and without a PFC circuit. The losses are also calculated for both systems and overall efficiency. Experimental results are presented to prove the theoretical analysis.