• Title/Summary/Keyword: SRF Criteria

Search Result 5, Processing Time 0.017 seconds

SRF Conversion Potential of Biomass and Mixed Plastic Waste Generated in D City (D시 내에서 발생하는 바이오매스 및 폐플라스틱 혼합 폐기물의 SRF 전환 포텐셜 분석)

  • Yang, Han-Sol;Kim, Ki-Kwang;Lim, Chae-Wook;Hyun, Jae-Hyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.55-61
    • /
    • 2018
  • This study evaluated if the selected samples meets the Solid Refuse Fuel quality criteria in Korea. Biomass and plastic wastes generated in D City were mixed in diverse ratio. When the biomass content was about 40%, the moisture content was close to the SRF criteria and was measured to be 9.8%. The ash contents were analyzed up to 4.19%, and the lower calorific values based on Steuer, Dulong Equation and Bomb Calorimeter were at least 4,851, 4,181 and 3,847 kcal/kg, respectively. As a result of the elemental analysis, sulfur and chloride content were measured up to 0.05%. Those values satisfied the SRF criteria. Also, heavy metals(Hg, Cd, Pb, As) were analyzed to be below the SRF criteria. This makes it possible to use efficiently the wood byproducts abandoned in the woods, and the physical properties of wood being weak to moisture can be supplemented with plastics. Consequently, if plastic and biomass were well mixed and made into SRF, it would overcome the problem of shortening the life span of incineration facilities due to the high temperature of plastic wastes in the incinerator.

Performance Analysis of an Intelligent Peripheral System in Advanced Intelligent Network (시뮬레이션을 통한 AIN IP 시스템의 호처리용량 분석)

  • Suh, Jae-Joon;Choi, Go-Bang;Yeo, Kun-Min;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.77-87
    • /
    • 1998
  • Intelligent Peripheral(IP) system is to provide specialized resource functions (SRF) such as playing announcement, collecting user information, and receiving messages in the Advanced Intelligent Network (AIN). We analyze the call processing capacity of an AIN IP system being developed in ETRI through an extensive simulation using SLAM II under a variety of AIN service scenarios. We consider televoting (VOT) and universal personal telecommunication (UPT) services which are to be provided at the fit implementation of the AIN in Korea. As the performance criteria to determine the call processing capacity, processor utilization, delay and call loss probability are considered. It turns out that the major processor called SAMP is the bottleneck processor, the service response delay dominates the delay performance, and the call loss probability becomes the primary criterion in determining the call processing capacity of the AIN IP system. It is also shown that the call processing capacity of the AIN IP system is determined by the utilization of the processor and the delay performance when the VOT ratio is below 70 percent but it is determined by the call loss probability due to the lack of service channels for providing the SRF operations.

  • PDF

A Study on the Optimal Management Option of the Disposal of Resources Found in Standard Plastic Garbage Bags (종량제봉투 내 폐자원에 대한 최적 처리방안 연구)

  • Park, Sang Jun;Kim, Eui Yong
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.44-54
    • /
    • 2014
  • A standard plastic garbage bag which was discarded from Incheon Metropolitan City was composed of 4.5% recyclable resources (aluminum cans 0.2%, steel cans 2.5%, glass 1.8%), 92.5% resources with recoverable energy (papers 23.0%, plastics 15.5%, combustible etc. 54.0%) and 3.0% non-combustible etc. Recycling is more effective than landfilling for aluminum cans, steel cans, and glass. The energy recovery process using solid refuse fuel (SRF) is more effective than incineration for papers and plastics. Incineration is more effective than recycling for combustible etc. 2,068,948 Million Btu of total energy savings and 21,008 $MTCO_2E$ of total GHG reductions were obtained by the application of the proposed scheme. The total energy savings were equivalent to an economic benefit of 422 billion won per year. The total GHG reductions were equivalent to a GHG benefit of 4,119 passenger cars not running per year. The lower calorific value of the combustible materials was obtained to be 1,936 kcal/kg of papers, 5,079 kcal/kg of plastics and 2,462 kcal/kg of combustible other resources, respectively. If papers and plastics are properly mixed, the mixture can be used as SRF. The lower calorific value of combustible other resources does not meet the quality criteria for refuse derived fuel, therefore its components are inappropriate to used as solid refuse fuel.

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.

The Characteristics of properties torrefied product according to Food waste and sewage sludge mixing ratio (음식물류폐기물과 하수슬러지 혼합비율에 따른 반탄화 생성물의 연료적 특성비교)

  • Kim, Hyun Sook;Pak, Dae Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.264-270
    • /
    • 2016
  • This Study is to into fuel using a torrefation reaction to food waste. When the fuel of only food waste alone, fuel value is was performed at a ratio of sewage sludge constant attempts to prevent low. Mixing ratios of food waste and sewage sludge, 10:0, 8:2, 6:4, 5:5. Regardless mixing ratio, it was possible to confirm that decreases the moisture content of 10% or less at a reaction temperature of $240^{\circ}C$ or higher. As the ratio of the reaction temperature and the sewage sludge is high, the fixed carbon content is increased. It was measured at up to 36%(mixing ratios6:4, reaction temperature $270^{\circ}C$) from the initial 1.1%. From the reaction temperature $240^{\circ}C$ satisfied with 3000Kcal/Kg or more is a SRF criteria shows the calorific value. It was possible to obtain a heating value that is increased from the raw sample approximately sextuple. As reaction temperature is heightened, Van krevelen Diagram moved to the range of Lignite range. It was possible to obtain high fuel ratio and 5,500Kcal/kg or less of a combustility index as the sewage sludge mixing ratio becomes high. Increase the fixed carbon content, than those food waste alone solid fuel into and improved fuel costs, it is necessary to ensure that the quality of the fuel is improved.