• 제목/요약/키워드: SPOOL

검색결과 216건 처리시간 0.025초

차압에 따른 PCV 밸브 유동 특성에 관한 연구 (A Study on Flow Characteristics in a PCV valve according to Various Differential Pressures)

  • 이종훈;이연원;김재환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.230-231
    • /
    • 2005
  • As environmental problems are important, automotive industries are developing various techniques to prevent air pollution. One of these is Positive Crankcase Ventilation (PCV) system. It removes blowby gas which includes about 30% hydrocarbon of total generated quantity. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates differently according to various operating conditions of an automotive engine. As this valve is very important, designers are feeling to design it because of both small size and high velocity. For this reason, we numerically investigated to understand both spool dynamic motion and internal fluid flow characteristics. As the results, spool dynamic characteristics, i.e. displacement, velocity, acting force, increase in direct proportion to the magnitude of differential pressure and indicate periodic oscillating motions. And, the velocity at the orifice region decreases according to the increase of differential pressure because of energy loss which is caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in the front of spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement. We expect that PCV valve designers can easily understand fluid flow inside a PCV valve with our visual information for their help.

  • PDF

수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화 (Flow Visualization of Plastic type PCV Valve with Horizontal Force)

  • 최윤환;이연원
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

알터네이터 스풀 고속 검사를 위한 자동화 비전시스템 설계 (Design on Automatic Vision System for Fast Alternator Spool Inspection)

  • 장봉춘
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4145-4150
    • /
    • 2010
  • 본 논문에서는 자동차 핵심부품 중 하나인 알터네이터 수풀의 육안검사를 대체하기 위한 머신비전시스템을 설계하는 데 목적이 있다. 플라스틱 사출물인 알터네이터 스풀의 경우 일반적으로 미성형, 찍힘, 뜯김, 크랙 등의 불량 유형이 발생한다. 스풀을 고속으로 전수검사하기 위하여 설계의 실패 사례를 예로 들었고, 이를 통해 최적의 고속 자동화 머신비전 시스템을 설계하고 2차 협력 업체인 중소기업을 위해 저비용 검사 시스템에 초점을 맞추고자 한다. 3차원 설계 소프트웨어인 Pro-Engineer와 CATIA가 사용되었다. 개발 제작 될 시스템은 산업현장에 적용하여 절대적 판정의 안정성을 도모하고, 생산성 향상을 위한 사이클 타임을 충족하는 데 기여할 수 있다.

굴삭기 IMV용 비례 유량제어밸브 정특성 해석 (Static Analysis of Dedicated Proportional Flow Control Valve for IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF

파일럿형 공기압 방향제어 밸브의 누설 고장판정 기법에 관한 연구 (Leakage Failure Determination Method of Pilot Pneumatic Directional Control Valve)

  • 강보식;김경수;장무성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권4호
    • /
    • pp.230-235
    • /
    • 2014
  • The failure modes of pneumatic directional control valves include leakage, wear of the spool seal, and sticking of the spool. Among them, the main failure mode of the valve is leakage. The leakage is caused by the wear of the spool seal. However, due to the characteristics of the seal material, the leakage rate is fluctuated a lot rather than constantly increased over time. If life analysis is performed using the first time data of leakage failure, predicted life cycles can be different from the real life cycles. This paper predicts life cycles of the pilot pneumatic directional control valve based on the three point moving average which considers the average of the fluctuating leakage rate.

PCV 밸브 내부 유동특성에 관한 수치해석적 연구 (Numerical Analytic Study on Internal Flow Characteristics of a PCV valve)

  • 이종훈;이연원;김재환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.111-116
    • /
    • 2005
  • An automobile engine has the Positive Crankcase Ventilation system (PCV system) for preventing air pollution as the environmental problem is important In this system, a PCV valve is the most important component to control the flow rate of Blowby gas which is generated by various engine powers. But, in the working place, the design of a PCV valve is very difficult because of interaction between fluid and solid motions. In this study, we investigated fluid flow characteristics using re-meshing method of a CFD technique to simulate spool behavior. As the results, a spool is periodically oscillated with time and is largely oscillated in proportion to the differential pressure between inlet and outlet. And, although the velocity at the orifice increases with the differential pressure, the flow rate of the outlet decreases. This research may give PCV designers visual flow information to help them

  • PDF

A high speed electro-hydraulic no leakage servo valve using multilayered piezoelectric devices (PZT) and an observer

  • Yokota, Shinichi;Park, Jung-Ho;Fuwa, Akihiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.54-59
    • /
    • 1994
  • In this study, a high-speed servo valve with no outer leakage is developed, which is used to drive flexible hydraulic actuators (FHA) for extreme environments. In the valve, multilayered PZT devices are used to drive a spool directly and quickly. A bellows is also used to prevent outer leak from the clearance between the spool and the sleeve. Employing a disturbance observer, the lack of the system damping of the valve is improved by feeding back the estimated velocity of the spool, as well as the estimated disturbance is fed back to eliminate effectively the hysteresis between input voltage and output displacement of the PZT devices.

  • PDF

Design and Dynamic Characteristic Analysis of the Direct Drive-type Pneumatic Servo Valve

  • Kim, Dong-Soo;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.88.6-88
    • /
    • 2002
  • In this study, the pneumatic servo valve was developed, and the study results could be summarized as follows; 1. A servo solenoid was designed, and its electromagnetic field was interpreted and the system's transient response was identified by using a commercial analysis program. 2. A program for analysis the flow in the spool was developed, and a study was conducted on the flow rate of the nozzle depending upon the pressure ratio between the upstream pressure and the downstream pressure, when the valve is fully opened in the spool and the flow force depending upon a displacement of the spool in the valve. 3. A PWM analog controller was designed and manufactured in...

  • PDF