• Title/Summary/Keyword: SPND

Search Result 13, Processing Time 0.057 seconds

Depletion Sensitivity Evaluation of Rhodium and Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 로듐 및 바나듐 자발 중성자계측기의 연소에 따른 민감도 평가)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2016
  • Self-powered neutron detector (SPND) is a sensor to monitor a neutron flux proportional to a reactor power of the nuclear power plants. Since an SPND is usually installed in the reactor core and does not require additional outside power, it generates electrons itself from interaction between neutrons and a neutron-sensitive material called an emitter, such as rhodium and vanadium. This paper presents the simulations of the depletion sensitivity evaluations based on MCNP models of rhodium and vanadium SPNDs and light water reactor fuel assembly. The evaluations include the detail geometries of the detectors and fuel assembly, and the modeling of rhodium and vanadium emitter depletion using MCNP and ORIGEN-S codes, and the realistic energy spectrum of beta rays using BETA-S code. The results of the simulations show that the lifetime of an SPND can be prolonged by using vanadium SPND than rhodium SPND. Also, the methods presented here can be used to analyze a life-time of those SPNDs using various emitter materials.

Calculation of Initial Sensitivity for Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 바나듐 자발 중성자계측기 초기 민감도 계산)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.229-234
    • /
    • 2016
  • Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the vanadium (V) SPND has been being developed to be used in OPR1000 nuclear power plants. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina insulator with a cylindrical geometry. An MCNP code was used to simulate some factors (neutron self-shielding factor and beta escape probability from the emitter) and space charge effect of an insulator necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND and contribute to the development of TMI (Top-mount In-core Instrumentation) which might be used in the SMART and SMR.

Simulation, design optimization, and experimental validation of a silver SPND for neutron flux mapping in the Tehran MTR

  • Saghafi, Mahdi;Ayyoubzadeh, Seyed Mohsen;Terman, Mohammad Sadegh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2852-2859
    • /
    • 2020
  • This paper deals with the simulation-based design optimization and experimental validation of the characteristics of an in-core silver Self-Powered Neutron Detector (SPND). Optimized dimensions of the SPND are determined by combining Monte Carlo simulations and analytical methods. As a first step, the Monte Carlo transport code MCNPX is used to follow the trajectory and fate of the neutrons emitted from an external source. This simulation is able to seamlessly integrate various phenomena, including neutron slowing-down and shielding effects. Then, the expected number of beta particles and their energy spectrum following a neutron capture reaction in the silver emitter are fetched from the TENDEL database using the JANIS software interface and integrated with the data from the first step to yield the origin and spectrum of the source electrons. Eventually, the MCNPX transport code is used for the Monte Carlo calculation of the ballistic current of beta particles in the various regions of the SPND. Then, the output current and the maximum insulator thickness to avoid breakdown are determined. The optimum design of the SPND is then manufactured and experimental tests are conducted. The calculated design parameters of this detector have been found in good agreement with the obtained experimental results.

Investigation of the Sensitivity Depletion Laws for Rhodium Self-Powered Neutrorn Detectors (SPNDs)

  • Kim, Gil-Gon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • An investigation of the sensitivity depletion laws for rhodium SPNDs was performed to reduce the uncertainty of the sensitivity depletion laws used in Combustion Engineering (CE) reactors and to develop calculational tools that provide the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools developed in this work are computer programs for a time-dependent neutron flux distribution in the rhodium emitter during depletion and for a time-dependent beta escape probability that a beta particle generated in the emitter escapes into the collector. These programs provide the sensitivity depletion laws and show the reduction of the uncertainty by about 1 % compared to that of the method employed by CE in interpreting the signal into the local neutron flux. A reduction in the uncertainty by 1 % in interpreting the signal into the local neutron flux reduces the uncertainty tv about 1 % in interpreting the signal into the local power and lengthens the lifetime of the rhodium SPND by about 10% or more.

  • PDF

Current compensation for material consumption of cobalt self-powered neutron detector

  • Liu, Xinxin;Wang, Zhongwei;Zhang, Qingmin;Deng, Bangjie;Niu, Yaobin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.863-868
    • /
    • 2020
  • Co Self-Powered Neutron Detector (SPND) is confronted with the problem of material consumption, which causes the response current can neither reflect the change of neutron flux in time nor be proportional to the neutron flux. In this paper, a deconvolution-based method is established to solve this problem. First of all, a step signal of neutron flux is taken as an example to analyze its performance. When the material consumption of Co SPND is 10%, after compensation, the response current can be in correspondence of neutron flux. Finally, the effects of this model in different Signal-to-Noise Ratio are analyzed, which fully confirms the truth of its excellent performance for compensating Co SPND's signal.

Calculation of the Neutron Sensitivity in Rh Self-Powered Detector

  • Lee, Wanno;Gyuseong Cho;Kim, Ho kyung;Hur, Woo-Sung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.101-106
    • /
    • 1996
  • For the application of the neutron flux mapping, an accurate calculation of the sensitivity is required because the sensitivity is proportional to the neutron flux density. Sensitivity is defined as the current per unit length per unit neutron flux and it mainly depends on the depression factor(f), the escape probability from the emitter($\varepsilon$1) and the charge build-up factor of the insulator layer(c). A Monte Carlo simulation was accomplished to calculate the sensitivity of rhodium emitter material and alumina(Al$_2$O$_3$) insulator with a cylindrical geometry, based on the (n,${\beta}$) interaction and on other interaction including the secondary electron generation for the more accurate estimation of the sensitivity. From the simulation results, factors fur the sensitivity were accurately calculated and compared with other theoretical and experimental values. In addition, the sensitivity linearly increases and saturates as the emitter radius increases. The accomplished method is useful in the analysis for the change of SPND sensitivity as a function of burn-up and in the optimum design of SPND.

  • PDF

Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation

  • Xiong Wu;Li Cai;Xiangju Zhang;Tingyu Wu;Jieqiong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4628-4636
    • /
    • 2023
  • Cables are indispensable in nuclear power plants for transmitting data measured by various types of detectors, such as self-powered neutron detectors (SPNDs). These cables will generate disturbing signals that must be accurately distinguished and eliminated. Given that the cable current is not very significant, previous research has focused on SPND, with little attention paid to cable evaluation and validation. This paper specifically focuses on the quantitative analysis of cables and proposes a theoretical model to predict cable noise. In this model, the reaction characteristics between irradiated neutrons and cables were discussed thoroughly. Based on the Monte Carlo method, a comprehensive simulation approach of neutron sensitivity was introduced and long-term irradiation experiments in a heavy water reactor (HWR) were designed to verify this model. The theoretical results of this method agree quite well with the experimental measurements, proving that the model is reliable and exhibits excellent accuracy. The experimental data also show that the cable current accounts for approximately 0.2% of the total current at the initial moment, but as the detector gradually depletes, it will contribute more than 2%, making it a non-negligible proportion of the total signal current.