• Title/Summary/Keyword: SPME fiber

Search Result 67, Processing Time 0.024 seconds

Analysis of Aroma Compounds of Cinnamon by Solid Phase Microextraction (Solid Phase Microextraction을 이용한 계피의 향기성분 분석)

  • 이창국;이재곤;장희진;곽재진
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2003
  • The volatile components of cinnamon bark were extracted by using different isolation methods, simultaneous distillation extraction (SDE) and solid phase microextraction (SPME). Then the volatile components were analyzed by gas chromatography(GC) and mass selective detector(MSD). 30 compounds were identified in cinnamon bark. In SPME technique, several factors influencing the equilibrium of the aroma compounds between sample and SPME fiber was taken into account, including the kind of SPME fiber, extraction temperature and extraction time. Four different SPME fibers were tested, namely polydimethylsiloxane (PDMS), poly acrylate(PA), divinyl- benzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene(CW/DVB). Among these SPME fiber, PDMS coating fiber showed the best results. The profile of volatile compounds of cinnamon bark at different extraction temperature and extraction time were investigated by 100$\mu\textrm{m}$ PDMS fiber.

Analysis of Residual Solvents in Food Packaging Materials Using Solid Phase Microextraction Method (Solid Phase Microextraction법을 이용한 식품포장재 중의 잔류용제 분석)

  • 서택교;박상현;이윤수;김정한;권익부
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.76-83
    • /
    • 1999
  • Solid phase microextraction (SPME) was used for the determination of 6 standard solvents (methanol, isopropanol, methyl ethyl ketone, ethyl acetate, cyclohexane, toluene) in food packaging materials. SPME method is a solvent-free sample preparation technique in which a fused silica fiber coated with polymeric organic liquid is introduced into the headspace above the sample. SPME method using fiber coated polydimethylisiloxane (PDMS) was compared with static headspace (SHS) method used as a reference. It was found that the optimal adsorption condition using PDMS-SPME method was 2$0^{\circ}C$ for 15 minutes for the standard solvents. Detection limits, linearity, reproducibility and recovery of both SHS and PDMS-SPME methods have been determined using 6 standard solvents. Both methods were characterized by high reproducibility and good linearity. Using SHS methods, the mean recovery of the 6 standard solvents was ranged from 75.5% to 105.8% with a mean relative standard deviation (RSD) of 0.3% to 4.8%. With PDMS-SPME method, the mean recovery of the 6 standard solvents was ranged from 86.7% to 108.3% with a mean RSD of 0.4% to 2.5%. The detection limits of both methods were the same for toluene, cyclohexane and methyl ethyl ketone; those of PDMS-SPME method were higher than those of SHS method for methanol, isopropanol and ethyl acetate. PDMS-SPME fiber shoed excellent adsorption for non-polar solvents such as toluene, while it showed relatively low adsorption for polar solvents such as methanol.

  • PDF

Analysis of Volatile Compounds in Perilla frutescens var. acuta by Solid Phase Microextraction (SPME에 의한 소엽의 향기성분 분석)

  • Chung, Mi-Sook;Lee, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • This study was conducted to find the appropriate fiber for extraction of volatile compounds from Perilla frutescens var. acuta. by solid phase microextraction (SPME). Two SPME fiber, carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane (PDMS) were used to determine the selectivity of the fibers to the different flavor compounds present in the Perilla frutescens var. acuta. Thirty-nine compounds were identified in the volatile compounds extracted by CAR/PDMS fiber, including 6 aldehyde, 1 alcohol, 10 hydrocarbons, 17 terpene hydrocarbons, 2 ketones and 3 benzenes. In PDMS fiber, 3 aldehydes, 2 alcohols, 13 terpene hydrocarbons and 2 miscellaneouses were identified. Perillaldehyde was found to be major volatile flavor component of fresh Perilla frutescens var. acuta. Perillaldehyde and terpene hydrocarbons were more identified in PDMS fiber. These results suggested that the selectivity of PDMS fiber was better than that of CAR/PDMS fiber in Perilla frutescens var. acuta..

Determination of Volatile Fatty Acids in Aqueous Samples by HS-SPME with In-Fiber Derivatization (Fiber내 유도체화/HS-SPME를 이용한 수용액 시료 중 휘발성 지방산의 분석)

  • Ahn, Yun Gyong;Lee, Jee Yeon;Kim, Jeehyeong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.458-465
    • /
    • 2003
  • The HS (headspace)-SPME (Solid phase microextraction) as rapid and simple method was performed for the determination of volatile fatty acids (VFAs) from the aqueous samples. In-fiber derivatization of VFAs with 1-Pyrenyldiazomethane (PDAM) was applied to improve their sensitivity of detection. In SPME procedure, typical parameters such as effects of solution pH, and salting out reagent and ultrasonication were investigated to improve the extraction efficiency. Based on the developed method, VFAs in wastewater samples were determined by gas chromatography / mass spectrometry-selected ion monitoring (GC/MS-SIM) mode.

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

고체상 미량분석법(SPME)을 이용한 GC/FID에서의 BTEX 및 TCE 동시 분석

  • 이재선;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.405-408
    • /
    • 2003
  • The soild phase microextraction(SPME)fiber which contains 100${\mu}{\textrm}{m}$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/flame ionization detector(GC/FID). The optimu condition of SPME fiber is determined that the analytes were extracted for 40min from extracts by using PDAfS100${\mu}{\textrm}{m}$ fiber. This new method could have wide application for the analysis of VOCs in aqueous solution.

  • PDF

A Study of Relative Performance of SPME Method for the Analysis of VOC and Some Major Odorous Compounds (SPME에 기초한 VOC 및 주요 악취물질들의 상대적 검량특성에 대한 연구)

  • Im, Moon-Soon;Song, Hee-Nam;Kim, Ki-Hyun;Sa, Jae-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, the performance characteristics of solid phase microextraction (SPME) were investigated for three major odorous groups that consist of 10 individual compounds ([1] volatile organic compounds (VOC): benzene, toluene, p-xylene and styrene, [2] reduced sulfur compounds (RSC): hydrogen sulfide, methyl mercaptan, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and carbon disulfide, and [3] amine: trimethylamine (TMA)). For the purpose of a comparative analysis, two types of SPME fiber ([1] polidimethylsiloxane/divinilbenzene (P/D) and [2] $Carboxen^{TM}$/polidimethylsiloxane (C/P)) were test ε d against each other for a series of standards prepared at different concentration levels (100, 200, and 500 ppb). To compare the analytical performance of each fiber, all standards were analyzed for the acquisition of calibration data sets for each compound. The results of P/D fiber generally showed that its calibration slope increased as a function of molecular weight across different VOCs; however, those of C/P fiber showed a fairly reversed trend. Besides, we confirmed that the application of SPME is limited to many sulfur compounds; only two compounds (DMS and DMDS) are sensitive enough to draw calibration results out of SPME. The calibration data for RSC show generally enhanced slop values for C/P relative to P/D fiber. However, in the case of TMA, we were not able to find a notable difference in their performance.

Volatile Components Analysis using SPME in Traditional Aromatic Plant Resources, Zanthoxylum schinifolium Siebold et Zucc. and Z. piperitum DC (SPME법을 이용한 전통 향료 유전자원 산초 및 초피의 정유성분 분석)

  • Cho, Min-Gu;Chae, Young-Am;Song, Ji-Sook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.3
    • /
    • pp.192-197
    • /
    • 2001
  • This study was carried out to select proper SPME fiber for volatile component analysis in Zanthoxylum schinifolium and Z. piperitum. PDMS, PDMS/DVB and CAR/PDMS were better for single standard absorption analysis. PDMS and PDMS/DVB showed similar results in comparison between direct injection and the mixture of 24 single standards as well as the mixture of 10 single standards. PDMS and PDMS/DVB were not different each other in absorption patterns between direct injection and headspace SPME regardless of split ratio of GC injection port. However PDMS/DVB rather than PDMS was effective in absorbing the sesquiterpenes within 30-40 minutes as using the SDE extracts from Z. schinifolium and Z. piperitum.

  • PDF

Determination of Volatile Organic Compounds (VOCs) in Drinking Water using Solid Phase Microextraction (SPME) (SPME를 이용한 수용액중의 휘발성 유기화합물 분석)

  • Park, Gyo-Beom;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.277-281
    • /
    • 2000
  • The solid phase microextrction (SPME) fiber which contains $100{\mu}m$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. sixteen volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/mass spectrometry (GC/MS). Analytical results showed that the percent of average recoveries and relative standard deviations were 97% and 4.7%, respectively. The value of detection limit was ranged from 0.01 to $0.5{\mu}g/l$. These results are more accurate than those obtained by the other methods such as purge and trap and headspace methods.

  • PDF

Determination of VOC in aqueous samples by the combination of headspace (HS) and solid-phase microextraction (SPME) (HS-SPME 방식에 기초한 물 중 VOC 성분의 분석기법에 대한 연구: 3가지 실험 조건의 변화와 분석감도의 관계)

  • Park, Shin-Young;Kim, Ki-Hyun;Yang, H.S.;Ha, Joo-Young;Lee, Ki-Han;Ahn, Ji-Won
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • The application of solid phase microextraction (SPME) is generally conducted by directly immersing the fiber into the liquid sample or by exposing the fiber in the head space (HS). The extraction temperature, the time of incubation, and application of stirring are often designated to be the most important parameters for achieving the best extraction efficiencies of HS-SPME analysis. In this study, relative importance of these three analytical parameters involved in the HS-SPME method is evaluated using a polydimethylsiloxane/carboxen (PDMS/CAR) fiber. To optimize its operation conditions the competing relationships between different parameters were investigated by comparing the extraction efficiency based on the combination of three parameters and two contracting conditions: (1) heating the sample at 30 vs. 50 C, (2) exposing samples at two durations of 10 vs. 30 min, and (3) application of stirring vs. no stirring. According to our analysis among 8 combination types of HS-SPME method, an extraction condition termed as S50-30 condition ((1) 1200 rpm stirring, (2) $50^{\circ}C$ exposure temp, and (3) 30 min exposure duration) showed maximum recovery rate of 45.5~68.5% relative to an arbitrary reference of direct GC injection. According to this study, the employment of stirring is the most crucial factor to improve extraction efficiency in the application of HS-SPME.