• Title/Summary/Keyword: SPM 분석

Search Result 164, Processing Time 0.022 seconds

Brain F-18 FDG PET for localization of epileptogenic zones in frontal lobe epilepsy: visual assessment and statistical parametric mapping analysis (전두엽 간질에서 F-18-FDG PET의 간질병소 국소화 성능: 육안 판독과 SPM에 의한 분석)

  • Kim, Yu-Kyeong;Lee, Dong-Soo;Lee, Sang-Kun;Chung, Chun-Kee;Yeo, Jeong-Seok;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.131-141
    • /
    • 2001
  • Purpose: We evaluated the sensitivity of the F-18 FDG PET by visual assessment and statistical parametric mapping (SPM) analysis for the localization of the epileptogenic zones in frontal lobe epilepsy. Materials and Methods: Twenty-four patients with frontal lobe epilepsy were examined. All patients exhibited improvements after surgical resection (Engel class I or II). Upon pathological examination, 18 patients revealed cortical dysplasia, 4 patients revealed tumor, and 2 patients revealed cortical scar. The hypometabolic lesions were found in F-18 FDG PET by visual assessment and SPM analysis. On SPM analysis, cutoff threshold was changed. Results: MRI showed structural lesions in 12 patients and normal results in the remaining 12. F-18 FDG PET correctly localized epileptogenic zones in 13 patients (54%) by visual assessment. Sensitivity of F-18 FDG PET in MR-negative patients (50%) was similar to that in MR-positive patients (67%). On SPM analysis, sensitivity decreased according to the decrease of p value. Using uncorrected p value of 0.05 as threshold, sensitivity of SPM analysis was 53%, which was not statistically different from that of visual assessment. Conclusion: F-18 FDG PET was sensitive in finding epileptogenic zones by revealing hypometabolic areas even in MR-negative patients with frontal lobe epilepsy as well as in MR-positive patients. SPM analysis showed comparable sensitivity to visual assessment and could be used as an aid in the diagnosis of epileptogenic zones in frontal lobe epilepsy.

  • PDF

Modulation of Adhesion Proteins Integrin β1 and FAK, and Cytoskeletal Protein Actin by Spermine in MCF-7 Cells (MCF-7 세포에서 spermine에 의한 부착단백질 Integrin β1과 FAK, 세포골격 단백질 actin의 조절)

  • Jee, Hye-Jin;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • Polyamines are essential for cell growth and differentiation; however their precise roles are unclear yet. In the present study, the cytotoxic effect of spermine (spm) on MCF-7 cells was investigated. In the MTT assay of MCF-7 cells treated with spm, cell viability was significantly decreased in a time-and dose-dependent manner. Cell viability measurement was confirmed by trypan blue staining. FACS analysis shows that sub-G1 was increased in a time-and dose-dependent manner too. When the cells were treated with spm, cells started to show morphological changes within 2 hrs. The expression of adhesion proteins (FAK and integrin ${\beta}1$), and cytoskeletal protein (actin) was checked by Western blotting analysis. Integrin ${\beta}1$ levels were slightly decreased, and FAK and actin levels were rapidly decreased with spm treatment. In confocal laser scanning microscopy, the distribution of actin did not change but the expression decreased in a dose-dependent manner with spm treatment. FAK was evenly distributed under the plasma membrane in the untreated control. However, at 10 ${\mu}M$ spm FAK seemed to move toward the cell nucleus. Integrin ${\beta}1$, which was mainly found in the focal point of the plasma membrane in the untreated control, dispersed through the entire plasma membrane in spm treatment. The present results indicate that cytotoxic effects of spm are triggered by the disruption of adhesion proteins and cytoskeletal protein.

Evaluation of Database Comparison Methods for 18F-FDG Brain PET/CT (18F-FDG Brain PET/CT 검사를 위한 데이터 비교 방법의 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.62-66
    • /
    • 2015
  • Purpose Various database comparison methods(DCM) are used for analyzing functional neuro-imaging. It is possible to statistically evaluate decreased or increased metabolism of abnormal patient's brain by comparing with asymptomatic controls in DCM. And results of DCM are additionally used for easily explaining defect region. The aim of this study was to evaluate usefulness of statistical parametric mapping(SPM) and scenium. Materials and Methods Data of 15 patients($62.02{\pm}15.03year$) underwent $^{18}F-FDG$ brain PET/CT were collected and analyzed. Biograph TruePoint 40 with TrueV, (Siemens) was used as a PET/CT scanner. Scenium(version 4.0) in Syngo.via(version VA30A) and SPM99 were applied for statistical evaluation. Consistency between PET reading and result of DCM were evaluated by 5 nuclear medicine physicians through a questionnaire survey. SUV and SD changes were evaluated by changing iteration, gaussian filter and matrix size in scenium. And average required time for generating result of SPM99 and scenium was compared by 3 medical technologists. Results Consistency from the result of SPM99 and scenium showed 84% and 92.4% compare to PET reading. When iteration 4, FWHM 8 and matrix size 168, SUV and SD were decreased by 0.59%, 8.73%, 4.69%, 20.38% and 0.88%, 8.25% respectively compare to routine parameter(iteration 8, FWHM 2 and matrix size 336) of scenium. Average required time of SPM99 and Scenium took 282 seconds and 116 seconds to generate result. Conclusion Results of SPM99 and Scenium showed high consistency compare to PET reading. Various parameters can be controled by user when using SPM. However, normal database needs to be acquired. And it takes significant amount of time and effort for the first set up. On the other hand, Scenium provides normal database even though modifiable parameters are limited. Therefore, more informations could be provided for brain PET/CT if properly understanding and selecting each DCM.

  • PDF

A Study on the Deviation of Cluster Based on Template Images of Korean Children's Brain SPECT Image Using the Statistical Parametic Mapping (통계적 파라미터 뇌지도작성을 이용한 국내 어린이 뇌 SPECT영상의 표준틀영상에 따른 화소덩어리의 편차연구)

  • 신동호;박성옥;권수일;조철우;윤석남;이명훈;신동오
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.45-53
    • /
    • 2004
  • SPM has been widely applied for comparison studios of the functional image data among groups of patients or individuals under different conditions and these images are from people ranging from children to adults. However, the analysis of children's brain images by using SPM can make children's brain images normalized to an adult's template image and this can result in some errors. So this study created the children's mean MR images based on the Magnetic Resonance Images of 36 normal children (age: 2~6, average age: 4.36, SD age: 1.41, M/F: 17/19), and the children's mean SPECT images by using SPECT images of 13 normal children (age: 2~6, average age: 4.80, SD age: 1.17, M/F: 10/3). We created the Korean children's brain template image, based on those mean images, and then we compared between the positions of the clusters, based on the blood flow, by normalizing ADHD children's SPECT image to Korean children's template image and SPM adult's template image. As a result of the analysis, the variation of the cluster positions was found to be a maximum of 25 ㎜. Therefore, we should be aware that we need to consider the template image and the p-value when we analyze the chlidren's brain image by using SPM.

  • PDF

나노트라이볼로지 분석을 이용한 W-N 나노박막의 표면 물성 연구

  • Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.133-133
    • /
    • 2011
  • 최근 연구중인 소자들의 크기가 점차 나노 크기를 가짐에 따라서 나노 영역에 대한 물성 분석 연구의 필요성이 대두되고 있다. 특히 나노 크기를 가지는 소자에 대한 기계적 특성은 기존의 마이크로 이상의 소자와는 다른 특성을 보이는 것으로 보고되고 있다. 그러나 이러한 나노 크기에 대한 연구에서 대부분을 차지하는 분광학적, 전기적 방법은 측정 영역 한계와 일정 깊이에 대한 평균적인 정보를 제공하게 된다. 본 연구에서는 나노트라이볼로지 분석의 대표적인 Nano-indenter와 Scanning Probe Microscopy(SPM) 분석을 통하여 박막의 수 혹은 수십 나노 미만의 영역과 깊이에 대한 기계적 물성을 연구하였고, 이를 기반으로 수십 나노 이하 두께를 가지는 W-N 확산박지막에 대한 연구를 실시하였다. 연구 결과에 의하면, 박막의 표면 hardness는 박막의 두께가 감소함에 따라서 4.19 GPa에서 3.51 GPa로 감소하였고, Weibull modulus를 통한 박막의 균일도는 2.75에서 7.91로 급격히 증가하는 현상을 나타내었다. 또한 SPM의 Kelvin probe force microscopy (KPFM), Force modulation microscopy (FMM) mode를 활용하여 표면에서의 Nitrogen 흡착에 의한 영상, 전기적 및 표면 탄성에 대한 연구를 실시하였다.

  • PDF

Usefulness of applying Macro for Brain SPECT Processing (Brain SPECT Processing에 있어서 Macro Program 사용의 유용성)

  • Kim, Gye-Hwan;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyeon-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.35-39
    • /
    • 2009
  • Purpose: Diagnostic and functional imaging softwares in Nuclear Medicine have been developed significantly. But, there are some limitations which like take a lot of time. In this article, we introduced that the basic concept of macro to help understanding macro and its application to Brain SPECT processing. We adopted macro software to SPM processing and PACS verify processing of Brain SPECT processing. Materials and Methods: In Brain SPECT, we choose SPM processing and two PACS works which have large portion of a work. SPM is the software package to analyze neuroimaging data. And purpose of SPM is quantitative analysis between groups. Results are made by complicated process such as realignment, normalization, smoothing and mapping. We made this process to be more simple by using macro program. After sending image to PACS, we directly input coordinates of mouse using simple macro program for processes of color mapping, adjustment of gray scale, copy, cut and match. So we compared time for making result by hand with making result by macro program. Finally, we got results by applying times to number of studies in 2007. Results: In 2007, the number of SPM studies were 115 and the number of PACS studies were 834 according to Diamox study. It was taken 10 to 15 minutes for SPM work by hand according to expertness and 5 minutes and a half was uniformly needed using Macro. After applying needed time to the number of studies, we calculated an average time per a year. When using SPM work by hand according to expertness, 1150 to 1725 minutes (19 to 29 hours) were needed and 632 seconds (11 hours) were needed for using Macro. When using PACS work by hand, 2 to 3 minutes were needed and for using Macro, 45 seconds were needed. After applying theses time to the number of studies, when working by hand, 1668 to 2502 minutes (28 to 42 hours) were needed and for using Macro, 625 minutes (10 hours) were needed. Following by these results, it was shown that 1043 to 1877 (17 to 31 hours were saved. Therefore, we could save 45 to 63% for SPM, 62 to 75% for PACS work and 55 to 70% for total brain SPECT processing in 2007. Conclusions: On the basis of the number of studies, there was significant time saved when we applied Macro to brain SPECT processing and also it was shown that even though work is taken a little time, there is a possibility to save lots of time according to the number of studies. It gives time on technologist's side which makes radiological technologist more concentrate for patients and reduce probability of mistake. Appling Macro to brain SPECT processing helps for both of radiological technologists and patients and contribute to improve quality of hospital service.

  • PDF

A comparison with Result of Normalized image to Different Template image on Statistical Parametric Mapping of ADHD children patients (과잉행동장애 어린이의 SPM(Statistical Parametric Mapping)분석에서 서로 다른 Template image로 규격화된 SPEC 영상의 결과 비교)

  • Shin, Dong-Ho;Park, Soung-Ock;Kwon, Soo-Il;Joh, Chol-Woo;Yoon, Seok-Nam
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • We studied 64 ADHD children patients group($4{\sim}15\;ys$, mean age : $8{\pm}2.6\;ys$. M/F:52/12) and 12 normal group($6{\sim}7\;ys$, mean age : $9.4{\pm}3.4\;ys$, M/F:8/4) of the brain has been used to analysis of blood flow between normal and ADHD group. For analysis of Children ADHD, we used 12 children's mean brain images and made Template image of SPM99 program. In increase of blood flow(P-value 0.05), the result of normalized images to Template image to offer from SPM99 program, showed significant cluster in inter-Hemispheric and occipital Lobe, in the case of normalized images to children template image, showed inter-hemispheric and parietal lobe.

  • PDF

Probabilistic Anatomical Labeling of Brain Structures Using Statistical Probabilistic Anatomical Maps (확률 뇌 지도를 이용한 뇌 영역의 위치 정보 추출)

  • Kim, Jin-Su;Lee, Dong-Soo;Lee, Byung-Il;Lee, Jae-Sung;Shin, Hee-Won;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.317-324
    • /
    • 2002
  • Purpose: The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal Neurological Institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Materials and Methods: Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the Statistical Probabilistic Anatomical Map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for 4he easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was peformed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Results: Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. Conclusion: These programs will be useful for the result interpretation of the image analysis peformed on MNI coordinate, as done in SPM program.