• Title/Summary/Keyword: SPICA

Search Result 83, Processing Time 0.023 seconds

Effect of Prunellae Spica Extracts on Anti-tumor Metastasis by Immune Activity (면역활성(免疫活性)에 의한 하고초(夏枯草)의 암전이(癌轉移) 억제(抑制) 효과(效果))

  • Heo, Ja-Kyung;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bok;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.41-52
    • /
    • 2009
  • Purpose: This study was designed to investigate the anti-tumor metastasis by immunomodulating effects of extracts of Prunellae Spica. Methods: Antimetastatic experiment was conducted in vivo by using colon 26-M3.1 carcinoma. And we observed cytotoxicity of Prunellae Spica on colon 26-M3.1 carcinoma, L5178Y-R lymphoma cell, hela cell and macrophage. To observe the immnomodulating effects of Prunellae Spica, we estimated IL-6, IL-10, IL-12, TNF-${\alpha}$ from peritoneal macrophages. And we evaluated the activation of NK cell by using anti-asialo-GM1 serum. Results: We found that the administration of Prunellae Spica extracts significantly inhibited tumor metastasis in vivo. In an in vitro cytotoxicity analysis, cell growth are closer to 100% in case of colon 26-M3.1 carcinoma, L5178Y-R lymphoma cell, hela cell at low concentration. In case of macrophage, cell proliferation is closer to 100% less than $62.5{\mu}g/m{\ell}$ of Prunellae Spica extracts. The level of cytokine such as IL-6, IL-10, IL-12 which stimulates Prunellae Spica extracts was increased in dose-dependent manner compared to the control group. TNF-${\alpha}$ is hardly secreted less than $250{\mu}g/m{\ell}$ The depletion of NK cells by anti-asialo GM1 serum partly abolished the inhibitory effect of Prunellae Spica on tumor metastasis. Conclusion: Prunellae Spica appears to have considerable activity on the anti-metastasis by activation the immune system such as macrophage and NK cell.

THE NEXT-GENERATION INFRARED SPACE MISSION SPICA: PROJECT UPDATES

  • Nakagawa, Takao;Shibai, Hiroshi;Kaneda, Hidehiro;Kohno, Kotaro;Matsuhara, Hideo;Ogawa, Hiroyuki;Onaka, Takashi;Roelfsema, Peter;Yamada, Toru;SPICA Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.331-335
    • /
    • 2017
  • We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5 m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

Effect of ethyl acetate layer of Prunellae Spica on the induction of apoptosis in U937 cells (하고초 ethyl acetate분획의 U937세포에 대한 세포고사 유도효과)

  • Lee Eun Ok;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.293-296
    • /
    • 2003
  • Prunellae Spica is a flower petal of Prunella vulgaris var. lilacina used for treatment of lymphoma, breast cancer, hepatitis and pathological fluid related diseases in oriental medicine. We tried to evaluate the mechanism of Prunellae Spica in the treatment of cancer. The ethyl acetate layer of Prunellae Spica showed a good cytotoxicity on U937 cells with IC50 of 8 ug/ml. It induced apoptosis in U937 dose-dependently by cell cycle analysis following PI staining. We also confirmed it induced DNA fragmentation in U937 cells from the concentration of 10 ug/ml. From western blot assay we observed the ethyl acetate layer of Prunellae Spica downregulated procaspase-3 and cleaved PARP in a dose dependent manner, whereas it didn't affect bax and bcl-2. Taken together, these results indicate the ethyl acetate layer of Prunellae Spica can induce apoptosis in U937 cells suggesting it can be potently applied to cancer.

FUTURE SPACE INFRARED TELESCOPE MISSION, SPICA

  • MATSUMOTO TOSHIO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89-91
    • /
    • 2005
  • SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an infrared astronomical satellite with a 3.5 m cooled telescope which is very powerful in mid- and far- infrared observations and makes complementary role to JWST and Herschel. SPICA will be launched at ambient temperature without any cryogen into the Sun-Earth L2 orbit and cooled down in space to 4.5 K with use of efficient radiative cooling and mechanical coolers. The present status of SPICA and the developments of the satellite system are reported.

Proposed Science Programs for SPICA Near-Infrared Instrument

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Hyung-Mok;Koo, Bon-Chul;Im, Myung-Shin;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Moon, Bong-Kon;Park, Sung-Joon;Pyo, Jeong-Hyun;Cha, Sang-Mok;SPICA-FPCTeam, SPICA-FPCTeam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2010
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation astronomical mission optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Due to its high angular resolution and unprecedented sensitivity, SPICA will enable us to resolve many key issues in the present-day astronomy. As an international collaboration, KASI proposed the near-infrared instrument which is composed of two parts; (1) science observation with the capability of imaging and spectroscopy covering $0.7{\mu}m$ to $5{\mu}m$ (FPC-S) (2) fine guiding to stabilize and improve the attitude (FPC-G). Here, we introduce the science programs proposed for SPICA/FPC-S.

  • PDF

THE NEXT-GENERATION INFRARED ASTRONOMY MISSION SPICA UNDER THE NEW FRAMEWORK

  • NAKAGAWA, TAKAO;SHIBAI, HIROSHI;ONAKA, TAKASHI;MATSUHARA, HIDEO;KANEDA, HIDEHIRO;KAWAKATSU, YASUHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.621-624
    • /
    • 2015
  • We present the current status (as of August 2014) of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3m-class telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the "Risk Mitigation Phase" activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA has been revisited, which resulted in la arger contribution from ESA than that in the original plan. To enable the ESA participation under the new framework, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is the mid-2020s.

DEVELOPMENT OF NEW STITCHING INTERFEROMETRY FOR THE SPICA TELESCOPE

  • Yamanaka, Asa;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Kondo, Toru;kokusho, Takuma;Tanaka, Kotomi;Hanaoka, Misaki;Nakagawa, Takao;Kawada, Mitsunobu;Isobe, Naoki;Arai, Toshiaki;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.363-365
    • /
    • 2017
  • The telescope to be onboard SPICA (Space Infrared Telescope for Cosmology and Astrophysics) has an aperture diameter of 2.5 m and its imaging performance is to be diffraction-limited at a wavelength of $20{\mu}m$ at the operating temperature of <8 K. Because manufacturing precise autocollimating flat mirrors (ACFs) with sizes comparable to the SPICA telescope is not technically feasible, we plan to use sub-aperture stitching interferometry through ACFs for optical testing of the telescope. We have verified the applicability of the sub-aperture stitching technique to the SPICA telescope by performing stitching experiments in a vacuum at a room temperature, using the 800-mm telescope and a 300-mm ACF. We have also developed a new method to reduce uncertainties possibly caused by cryogenic and gravitational deformations of ACFs.

The Role of SPICA/FPC in the SPICA System

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Dae-Hee;Pyo, Jeong-Hyun;Park, Sung-Joon;Moon, Bong-Kon;Ree, Chang-Hee;Park, Young-Sik;Han, Won-Yong;Lee, Hyung-Mok;Im, Myung-Shin;SPICA/FPC Team, SPICA/FPC Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2012
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. It will achieve the high resolution as well as the unprecedented sensitivity from mid to far-infrared range. The FPC (Focal Plane Camera) is a Korean-led near-infrared instrument as an international collaboration. The FPC-S and FPC-G are responsible for the scientific observation in the near-infrared and the fine guiding, respectively. The FPC-G will significantly reduce the alignement and random pointing error through the observation of guiding stars in the focal plane. We analyzed the pointing requirement from the focal plane instruments. The feasibility study was performed to achieve the requirements. Here, we present the role of SPICA/FPC as a fine guiding camera.

  • PDF

Status Report of SPICA/FPC

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Dae-Hee;Pyo, Jeong-Hyun;Park, Sung-Joon;Moon, Bong-Kon;Ree, Chang-Hee;Park, Young-Sik;Han, Won-Yong;Lee, Hyung-Mok;Im, Myung-Shin;SPICA/FPC Team, SPICA/FPC Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.126.1-126.1
    • /
    • 2011
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Owing to unique capability of focal plane instruments onboard SPICA, it will enable us to resolve many astronomical key issues from the star-formation history of the universe to the planetary formation. The FPC (Focal Plane Camera) is a Korean-led near-infrared instrument as an international collaboration. Korean consortium for FPC proposed a key instrument responsible for a fine guiding (FPC-G). The back-up of FPC-G will make scientific observations as well. We have examined the legacy science programs for FPC and performed the feasibility study for the fine guiding system. Recently, the international review process is now in progress, in order to make a selection of the focal plane instruments. Here, we report the current status of SPICA/FPC project.

  • PDF

DEVELOPMENT OF A CRYOGENIC TESTING SYSTEM FOR MID-INFRARED DETECTORS ON SPICA

  • Nishiyama, Miho;Kaneda, Hidehiro;Ishihara, Daisuke;Oseki, Shinji;Takeuchi, Nami;Nagayama, Takahiro;Wada, Takehiko
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.355-357
    • /
    • 2017
  • For future space IR missions, such as SPICA, it is crucial to establish an experimental method for evaluating the performance of mid-IR detectors. In particular, the wavelength dependence of the sensitivity is important but difficult to be measured properly. We are now preparing a testing system for mid-IR Si:As/Si:Sb detectors on SPICA. We have designed a cryogenic optical system in which IR signal light from a pinhole is collimated, passed through an optical filter, and focused onto a detector. With this system, we can measure the photoresponse of the detector for various IR light using optical filters with different wavelength properties. We have fabricated aluminum mirrors which are adopted to minimize thermal distortion effects and evaluated the surface figure errors. The total wavefront error of the optical system is $1.3{\mu}m$ RMS, which is small enough for the target wavelengths ($20-37{\mu}m$) of SPICA. The point spread function measured at a room temperature is consistent with that predicted by the simulation. We report the optical performance of the system at cryogenic temperatures.