• Title/Summary/Keyword: SPGR

Search Result 15, Processing Time 0.025 seconds

Functional MR Imaging of Cerbral Motor Cortex: Comparison between Conventional Gradient Echo and EPI Techniques (뇌 운동피질의 기능적 영상: 고식적 Gradient Echo기법과 EPI기법간의 비교)

  • 송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.

  • PDF

Comparative Evaluation between 1.5T vs 3.0T MRI in Brain Metastasis According to its Size

  • Jung, Woo-Seok;Jung, Tae-Sub;Heo, Jin;Lee, Jae-Hoon
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.22-22
    • /
    • 2003
  • The purpose of this study was to compare the detection rate of brain metastasis according to size of nodule between 1.5T and 3.0T MRI 대상 및 방법: We reviewed 44 patients with primary tumors and clinical symptoms suggesting brain metastasis. After administration of double dose gadolinium-DTPA, MR imaging was performed with 3D SPGR sequence by 3.0T MRI and then with T1 SE sequence by 1.5T MRI. Consequently, comparison was done in 1.5T T1 SE sequence and 3.0T 3D SPGR sequence. With use of the signal intensity (SI) measurements in the metastatic nodules and adjacent tissue, metastatic nodule-to-adjacent tissue SI ratio were calculated. In each patient, the number of metastatic lesions detected in 1.5T and 3.0T, and their size were assessed qualitatively by three blinded readers.

  • PDF

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D T2* weighted Technique and Fat Suppressed 3D SPGR Technique when Examining MRI for Knee Joint Cartilage Assesment (슬관절 연골 평가를 위한 자기공명영상 검사 시 지방 신호 억제 3D T2* Weighted 기법과 지방 신호 억제 3D SPGR 기법의 비교 및 유용성 평가)

  • Kang, Sung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.219-225
    • /
    • 2016
  • In this study, for assessment of degenerative knee joint cartilage disease we acquired images by fat suppressed 3D spoiled gradient recalled (SPGR) and fat suppressed 3D $T2^*$ weighted imaging techniques. To do a quantitative evaluation, the knee joint cartilage was divided into medial femoral cartilage (MFC), medial tibial cartilage (MTC), lateral femoral cartilage (LFC), lateral femoral cartilage (LFC) and patella cartilage (Pat) to measure their respective signal intensity values, signal-to-noise ratio, and contrast-to-noise ratio. As for the measured values, statistical significance between two techniques was verified by using Mann-Whitney U-Test. To do a qualitative evaluation, two radiologists have examined images by techniques after which image artifact, cartilage surface, tissue contrast, and depiction of lesion distinguishing were evaluated based on 4-point scaling (1: bad, 2: appropriate, 3: good, 4: excellent), and based on the result, statistical significance was verified by using Kappa-value Test. 3.0T MR system and HD T/R 8ch knee array coil were used to acquire images. As a result of a quantitative analysis, based on SNR values measured by using two imaging techniques, MFC, LFC, LTC, and Pat showed statistical significance (p < 0.05), but MTC did not (p > 0.05). As a result of verifying statistical significance for measured CNR value, MFC, LFC, and Pat showed statistical significance (p < 0.05), while MTC and LTC did not show statistical significance (p > 0.05). As a result of a qualitative analysis, by comparing mean values for evaluated image items, 3D $T2^*$ weighted Image has indicated a slightly higher value. As for conformance verification between the two observers by using Kappa-value test, all evaluated items have indicated statistically significant results (p < 0.05). 3D $T2^*$ weighted technique holds a clinical value equal to or superior to 3D SPGR technique with respect to evaluating images, such as distinguishing knee joint cartilages, comparing nearby tissues contrast, and distinguishing lesions.

High-Resolution Contrast-Enhanced 3D-Spoiled Gradient-Recalled Imaging for Evaluation of Intracranial Vertebral Artery and Posterior Inferior Cerebellar Artery in Lateral Medullary Infarction (고해상도 조영증강 삼차원 회손기울기 회상 영상을 이용한 측면연수경색 환자의 두개내 척추동맥 및 뒤아래소뇌동맥 평가)

  • Yoon, Youngno;Ahn, Sung Jun;Suh, Sang Hyun;Park, Ah Young;Chung, Tae-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • Purpose : To determine whether high-resolution contrast-enhanced three dimensional imaging with spoiled gradient-recalled sequence (HR-CE 3D-SPGR) plays a meaningful role in the assessment of intracranial vertebral artery (ICVA) and posterior inferior cerebellar artery (PICA) in lateral medullary infarction (LMI). Materials and Methods: Twenty-five patients confirmed with LMI were retrospectively enrolled with approval by the IRB of our institute, and 3T MRI with HR-CE 3D-SPGR and contrast-enhanced magnetic resonance angiography (CE-MRA) were performed. Two radiologists who were blinded to clinical information and other brain MR images including diffusion weighted image independently evaluated arterial lesions in ICVA and PICA. The demographic characteristics, the area of LMI and cerebellar involvement were analyzed and compared between patients with arterial lesion in ICVA only and patients with arterial lesions in both ICVA and PICA on HR-CE 3D-SPGR. Results: Twenty-two of twenty-five LMI patients had arterial lesions in ICVA or PICA on HR-CE 3D SPGR. However twelve arterial lesions in PICA were not shown on CE-MRA. Concurrent cerebellar involvement appeared more in LMI patients with arterial lesion in ICVA and PICA than those with arterial lesion in ICVA alone (p = 0.069). Conclusion: HR-CE 3D-SPGR can help evaluate arterial lesions in ICVA and PICA for LMI patients.

Automated Brain Region Extraction Method in Head MR Image Sets (머리 MR영상에서 자동화된 뇌영역 추출)

  • Cho, Dong-Uk;Kim, Tae-Woo;Shin, Seung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.1-15
    • /
    • 2002
  • A noel automated brain region extraction method in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in clue fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded Drain masks. This method can automatically extract a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.

  • PDF

Evaluate the Possibility of MT Pulse at 3T CE-TOF-MRA in Patients with Cerebral Infarction (뇌경색 환자의 3Tesla CE-TOF-MRA에서 MT 펄스의 유용성)

  • Bae, Sung-Jin
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • The purpose of this study was to evaluate the possibility of utilizing MT pulse at CE-TOF-MRA in patients with cerebral infarction. MRA using time-of-flight(TOF) technique with varying offset frequencies (0, 600, 1,200, and 1,800 Hz) magnetization transfer were performed in 10 patients with cerebral infarction at 3.0T MR scanner. CE-TOF-MRA and TOF-SPGR in normal vessel shown decreased SNR and increased CNR. The highest CNR in narrowing vessel shown at CE-TOF-MRA using 600 and 1,200 Hz offset frequencies. CNR in stenosis vessel increased dependent on using offset frequencies. The occlusion was clearly shown, and the highest CNR in occlusion shown at CE-TOF-MRA using 1,800 Hz offset frequencies. There was no shape variation in narrowing vessel or no visualizing vessel.

  • PDF

Automatic Brain Segmentation for 3D Visualization and Analysis of MR Image Sets (MR영상의 3차원 가시화 및 분석을 위한 뇌영역의 자동 분할)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.542-551
    • /
    • 2000
  • In this paper, a novel technique is presented for automatic brain region segmentation in single channel MR image data sets for 3D visualization and analysis. The method detects brain contours in 2D and 3D processing of four steps. The first and the second make a head mask and an initial brain mask by automatic thresholding using a curve fitting technique. The stage 3 reconstructs 3D volume of the initial brain mask by cubic interpolation and generates an intermediate brain mask using morphological operation and labeling of connected components. In the final step, the brain mask is refined by automatic thresholding using curve fitting. This algorithm is useful for fully automatic brain region segmentation of T1-weighted, T2-weighted, PD-weighted, SPGR MRI data sets without considering slice direction and covering a whole volume of a brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 in comparison with manual drawing in similarity index.

  • PDF

Comparison of static MRI and pseudo-dynamic MRI in tempromandibular joint disorder patients (측두하악관절장애 환자에서의 static MRI와 pseudo-dynamic MRI의 비교연구)

  • Lee, Jin-Ho;Yun, Kyoung-In;Park, In-Woo;Choi, Hang-Moon;Park, Moon-Soo
    • Imaging Science in Dentistry
    • /
    • v.36 no.4
    • /
    • pp.199-206
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. Materials and Methods: In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. Results: No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P<0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). Conclusion: This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change.

  • PDF

Intra-Rater and Inter-Rater Reliability of Brain Surface Intensity Model (BSIM)-Based Cortical Thickness Analysis Using 3T MRI

  • Jeon, Ji Young;Moon, Won-Jin;Moon, Yeon-Sil;Han, Seol-Heui
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • Purpose: Brain surface intensity model (BSIM)-based cortical thickness analysis does not require complicated 3D segmentation of brain gray/white matters. Instead, this technique uses the local intensity profile to compute cortical thickness. The aim of the present study was to evaluate intra-rater and inter-rater reliability of BSIM-based cortical thickness analysis using images from elderly participants. Materials and Methods: Fifteen healthy elderly participants (ages, 55-84 years) were included in this study. High-resolution 3D T1-spoiled gradient recalled-echo (SPGR) images were obtained using 3T MRI. BSIM-based processing steps included an inhomogeneity correction, intensity normalization, skull stripping, atlas registration, extraction of intensity profiles, and calculation of cortical thickness. Processing steps were automatic, with the exception of semiautomatic skull stripping. Individual cortical thicknesses were compared to a database indicating mean cortical thickness of healthy adults, in order to produce Z-score thinning maps. Intra-class correlation coefficients (ICCs) were calculated in order to evaluate inter-rater and intra-rater reliabilities. Results: ICCs for intra-rater reliability were excellent, ranging from 0.751-0.940 in brain regions except the right occipital, left anterior cingulate, and left and right cerebellum (ICCs = 0.65-0.741). Although ICCs for inter-rater reliability were fair to excellent in most regions, poor inter-rater correlations were observed for the cingulate and occipital regions. Processing time, including manual skull stripping, was $17.07{\pm}3.43min$. Z-score maps for all participants indicated that cortical thicknesses were not significantly different from those in the comparison databases of healthy adults. Conclusion: BSIM-based cortical thickness measurements provide acceptable intra-rater and inter-rater reliability. We therefore suggest BSIM-based cortical thickness analysis as an adjunct clinical tool to detect cortical atrophy.