• Title/Summary/Keyword: SPDS

Search Result 53, Processing Time 0.024 seconds

A Study on the Function Improvement of the Serge Protection Device for Radar Control Unit (레이더장비에 적용되는 저압전력계통의 서지보호장치 기능개선에 관한 연구)

  • Jo, Hee-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.400-407
    • /
    • 2016
  • The purpose of this study is to propose a useful method of solving the problem of thermal stability in surge protection devices (SPDs). First of all, the existence of the problem in the developed SPDs was confirmed by experiment. After analyzing the problem, a useful method of solving it is proposed and implemented. An experiment is performed to verify the performance of the implemented device. The results of this study are as follows; it is revealed that the problem of the thermal stability results from the varistor, one of the components in the SPD. A varistor with a built-in thermal fuse is applied to the SPD for the purpose of solving the problem. The experimental results confirmed that the thermal stability was improved by replacing the varistor. As a result of this study, the reliability of radar control units is enhanced and the probability of malfunction is reduced.

Failure Prediction of Metal Oxide Varistor Using Nonlinear Surge Look-up Table Based on Experimental Data

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.317-322
    • /
    • 2015
  • The metal oxide varistor (MOV) is a major component of the surge protection devices (SPDs) currently in use. The device is judged to be faulty when fatigue caused by the continuous inflow of lightning accumulates and reaches the damage limit. In many cases, induced lightning resulting from lightning strikes flows in to the device several times per second in succession. Therefore, the frequency or the rate at which the SPD is actually exposed to stress, called a surge, is outside the range of human perception. For this reason, the protective device should be replaced if it actually approaches the end of its life even though it is not faulty at present, currently no basis exists for making the judgment of remaining lifetime. Up to now, the life of an MOV has been predicted solely based on the number of inflow surges, irrespective of the magnitude of the surge current or the amount of energy that has flowed through the device. In this study, nonlinear data that shows the damage to an MOV depending on the count of surge and the amount of input current were collected through a high-voltage test. Then, a failure prediction algorithm was proposed by preparing a look-up table using the results of the test. The proposed method was experimentally verified using an impulse surge generator

A Method for Reducing the Residual Voltage of Hybrid SPD Circuit Using Choke Coils (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Cho, Sung-Chul;Eom, Ju-Hong;Lee, Tae-Hyung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.250-253
    • /
    • 2007
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for commnuication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the activation voltage required to initiate the discharge process in the GDTs for sufficient amount of time can be large enough to damage surge-sensitive protected circuits. For GDTs with a considerably high initial over-voltage value, we should limit the peak voltage using a TVS or filter. As for ZnO varistors, even though their performance for voltage restriction is excellent, their applications in high-frequency commnuication circuits have been limited because of higher internal capacitance when compared to the GDTs. In order to develop a surge protector for commnuication applications by taking advantages of these two devices, we built a combination circuit that connects a GDT and a ZnO varistor along with a choke coil in common and differential modes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurements at each step. The experiment results show that the surge voltage restriction with the choke coil is more effective in 100 [kHz] RingWave voltage than in lightning impulse voltage.

  • PDF

Analysis of the Protective Distance of Low-Voltage Surge Protective Device(SPD) to Equipment (저압용 서지 보호 장치(SPD)의 보호 거리 해석)

  • Lee, Jung-Woo;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.28-34
    • /
    • 2012
  • Installing surge protection devices for a low-voltage system is important to ensure the survival of electric or electronic devices and systems. If surge protection devices (SPD) are installed without consideration of the concept of lightning protection zones, the equipment to be protected might be damaged despite the correct energy coordination of SPDs. This damage is induced by the reflection phenomena on the cable connecting an external SPD and the load protected. These reflection phenomena depend on the characteristics of the output of the external SPD, the input of the loads, and the cables between the load and the external SPD. Therefore, the SPD has an effective protection distance under the condition of the specific load and the specific voltage protection level of SPD. In this paper, PSCAD/EMTDC software is used to simulate the residual voltage characteristics of SPD Entering the low-voltage device. And by applying a certain voltage level, the effective protection distances of SPD were analyzed according to the each load and length of connecting cable, and the effectiveness of SPD were verified.

Influences of the Length of Connecting Leads on the Energy Coordination in Coordinated SPD Systems (협조된 SPD시스템에서 접속선의 길이가 에너지협조에 미치는 영향)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2014
  • For the purpose of designing and applying the optimum surge protection scheme, multi-stage coordinated surge protective device(SPD) system is suitable to successfully fulfill its tasks; first, to divert a large amount of the transient energy, second, to clamp the overvoltage to the level below the withstand impulse voltage of the equipment to be protected. The length of SPD connecting leads shall be as short as possible. Long connecting leads will degrade the protection effect of SPDs. In this paper, the influences of the length of connecting leads on the energy sharing in a coordinated SPD system were investigated experimentally, and the simulation of determining the energy sharing and protection voltage level of each SPD depending on the length of connecting leads was carried out by using P-spice program. It was confirmed that the protection voltage level and energy sharing in coordinated SPD systems are strongly influenced by the length of connecting leads.

A method for reducing the residual voltage of hybrid SPD circuit using choke coils (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Lee, Tae-Hyung;Jo, Sung-Chul;Han, Hoo-Suk;Eom, Ju-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1488-1489
    • /
    • 2006
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for communication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the activation voltage required to initiate the discharge process in the GDTs for sufficient amount of time can be large enough to damage surge-sensitive protected circuits. For GDTs with a considerably high initial over-voltage value, we should limit the peak voltage using a TVS or filter. As for ZnO varistors, even though their performance for voltage restriction is excellent their applications in high-frequency communication circuits have been limited because of higher internal capacitance when compared to the GDTs. In order to develop a surge protector for communication applications by taking advantages of these two devices, we built a combination circuit that connects a GDT and a ZnO varistor along with a choke coil in common and differential modes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurements at each step. The experiment results show that the surge voltage restriction with the choke coil is more effective in differential mode than in common mode.

  • PDF

A Method for Reducing the Residual Voltage of Hybrid SPD Circuit Using Choke Coil (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Cho, Sung-Chul;Eom, Ju-Hong;Lee, Tae-Hyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.96-101
    • /
    • 2007
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for communication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the sparkover voltage required to initiate the discharge process in the GDTs and the time taken for arc formation process can be large enough to damage to sensitive circuits. For GDTs with a considerably high initial residual voltage, we should limit the peak voltage using a TVS or filter. We made a hybrid SPD circuits of common-mode type and differential-mode type with the filter using common-mode choke. Also, we applied lightning impulse voltage and ring wave voltage which frequency bandwidth are different each other and verified the characteristics of hybrid SPD circuits according to waveshapes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurement at each step. The experiment results show that the surge voltage reduction with the choke coil is more effective in differential-mode circuit than in common-mode circuit.

Devlopment of Smart Pyrotechnic Igniter (스마트 파이로테크닉스 점화장치 개발)

  • Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.252-255
    • /
    • 2007
  • Recently military industrial company, utilizing company funded R&D and goverment and industry contracts, has developed ACTS/DACS technology. This technology can be utilized to rapidly steer "smart" bullets, "smart" rounds, tactical missile, cruise missile and kill vehicles for both endo- and exoatmospheric applications. The ACTS/DACS typically consists of a Smart Bus Controller(SCB), a proprietary network firing bus, Smart Pyrotechnic Devices(SPD), rocket motors, and a structure. The SCB communicates with the SPDs over the propretary network firing bus. Each rocket motor contains an SPD which provides rocket motor ignition. Firing energy is stored locally in the SPD so surge currents do not occur in the system as rocket motors are fired. This approach allows multiple, truly simultaneous firings without the need for large, dedicated batteries. Each SPD also functions as a network tranceiver and high reliability fir set all in the space of a single-sided 10 millimeter diameter circuit. The present work develops a new means for igniting explosive materials. The volume of semiconductor bridge (SCB) is over 30 times smaller than a conventional hot wire. We believe that the present work has a potential for development of a new igniter such as smart pyrotechnic device.

  • PDF

Development of a Surge Protective Device for Computer Network to International Standards (국제규격 대응 컴퓨터 네트워크용 서지방호장치 개발)

  • Park Dae-won;Song Jae-yong;Han Joo-sup;Kil Gyung-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1253-1259
    • /
    • 2005
  • This paper dealt with the development of surge protection devices (SPDs) that can protect high speed computer network devices from overvoltages caused by switching operations or lightning surges. The designed SPD is a form of hybrid circuit which is composed of a gas tube having large current diverting capability, high response bi-directional avalanche diodes, and fast recovery diodes to reduce insertion loss on high frequency domain. Surge protection and signal transmission characteristics of the fabricated SPD was tested according to the international standards, IEC 61000-4-5 and IEC 61643-21. From the test results, the SPD is satisfied with the international standards and the high cut-off frequency was 204 MHz. Also, the SPD showed a good performance without an insertion loss on a field test of 100 Mbps class Local Area Network.

The three-dimensional temporal behavior measurement of light emitted from plasma display panel by the Scanned Point-Detecting System (Scanned Point-Detecting System을 이용한 플라즈마 디스플레이 패널에서 방출되는 광의 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸;김준엽
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.559-563
    • /
    • 2002
  • We measure the 3-dimensional temporal behavior of the light emitted from the discharge cell of a plasma display panel (PDP) by using a scanned point detecting system. The light signal detected by a PM tube is sent to the oscilloscope, and the oscilloscope is connected to a PC with GPIB. From the resultant temporal behaviors, we could analyze the discharge characteristics of the panel with a Ne-Xe (4%) mixing gas at a 400 torr pressure. The top view of the panel shows that discharge moves from the inner edge of the cathode electrode to the outer cathode electrode, forming an arc shape. The side view of the panel shows that the light is detected up to 150 $\mu\textrm{m}$ up the barrier rib. After a trigger pulse is applied, peak intensity is detected at 730 ns and peak intensity position is located at the center of the ITO electrodes.