• Title/Summary/Keyword: SPD(Surge Protective Device)

Search Result 38, Processing Time 0.029 seconds

Influences of the Length of Connecting Leads on the Energy Coordination in Coordinated SPD Systems (협조된 SPD시스템에서 접속선의 길이가 에너지협조에 미치는 영향)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2014
  • For the purpose of designing and applying the optimum surge protection scheme, multi-stage coordinated surge protective device(SPD) system is suitable to successfully fulfill its tasks; first, to divert a large amount of the transient energy, second, to clamp the overvoltage to the level below the withstand impulse voltage of the equipment to be protected. The length of SPD connecting leads shall be as short as possible. Long connecting leads will degrade the protection effect of SPDs. In this paper, the influences of the length of connecting leads on the energy sharing in a coordinated SPD system were investigated experimentally, and the simulation of determining the energy sharing and protection voltage level of each SPD depending on the length of connecting leads was carried out by using P-spice program. It was confirmed that the protection voltage level and energy sharing in coordinated SPD systems are strongly influenced by the length of connecting leads.

Survey of Damage Cases for Surge Protective Devices Installed Electrical Communication Systems and Analysis of Degradation Diagnosis Method (전자통신설비의 SPD 소손사례 및 열화진단기법 분석)

  • Lim, Jong-Wook;Lee, Jae-Young;Kwon, June-Hyuk
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.15-18
    • /
    • 2009
  • In recent years electric devices and telecommunication facilities were often damaged by surge generated lightning discharge. When the service was interrupted by failure of electrical devices due to surge the social loss is very enormous. Therefore in order to protect electrical systems against lightning, SPDs(Surge protective device) have been used But damaged SPDs often make some troubles like fire and interrupt of service. In this work, 3rd harmonic leakage current defection method was applied as the diagnosis of SPD degradation and the effectiveness of this method was verified by field survey.

  • PDF

Energy Coordination between Cascaded Voltage Limiting Type SPDs in Surge Currents due to Direct Lightning Flashes (종속 접속된 전압제한형 SPD의 직격뢰 서지전류에 대한 에너지협조)

  • Lee, Bok-Hee;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.68-75
    • /
    • 2014
  • Cascaded applications of surge protective devices(SPDs) are required in order to reduce the stress on the electrical and electronics equipment being protected, and the energy coordination between the cascaded SPDs is very important. This paper deals with the experimental results obtained from the installation conditions of full-scale SPDs. The energy coordination between the upstream Class I SPD and the downstream Class II SPD was measured using a $10/350{\mu}s$ impulse current due to direct lightning flashes. The distances between the cascaded SPDs were 3, 10, and 50m, and the maximum test current was 12.5kA. As a result, the energy sharing between cascaded SPDs was dependent on the voltage protection level of each SPD and the distance between two SPDs. An overview of how to select SPD ratings in applications of cascaded SPDs system was discussed based on the energy coordination between the two SPDs. The proposed test results for the energy coordination between two-stage cascaded SPDs can be used in effective applications of SPDs.

Transient Voltage's Breaking by Development of High Performance SPD (고성능 서지보호기 개발을 통한 과도 이상전압 차단)

  • Kim, Jae-Hoon;Han, Sang-Ok;Kim, Sun-Ho;Koo, Kyung-Wan;Lee, Sei-Hyun;Park, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2065_2066
    • /
    • 2009
  • In this paper, we have developed high performance SPD(surge protective device) and evaluated the characteristics in comparison with typical SPD used in the inside and outside of the country. The new SPD was composed of MOV(metal oxide varistor), GDT(gas discharge tube) and impedance such as resistors, capacitors or varistors. To estimate operating the characteristic of the SPD which was developed, it was measured surge voltage caused by fault current or surge according to IEC 61000-4-5. As a result it was found that the power supply was cut off by high performance SPD when caused a short-circuit. In addition we could know that it could prevent ELB(earth leakage breaker)'s malfunction caused by surge.

  • PDF

Simulation Method on the Protection Effects of Voltage-Limiting Type SPDs Associated with the Protective Distance (보호거리에 따른 전압제한형 SPD의 보호효과에 대한 시뮬레이션기법)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents a method of simulating the protection effects of surge protective devices(SPDs) depending on the protective distance and types of input impedance of load to be protected. In order to analyze the protective performances of voltage-limiting type SPDs associated with the reflection and oscillation phenomena, the terminal voltage across load being protected and the residual voltage of SPDs were simulated by using EMTP model as functions of the protective distance and types of input impedance of loads. As a consequence, SPDs should be installed by taking into account the protective distance and input impedance of loads to achieve reliable protection of electrical and electronic equipment from lightning and switching surges. It is expected that the simulation method proposed in this paper could be practically used in design for installing SPDs in low-voltage distribution systems.

Surge Protective Device(1) (서지보호장치(1))

  • Lee, Gi-Hong
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-71
    • /
    • 2012
  • 금년부터 SPD가 KS제품으로 인정받을 수 있게 됩니다. 이러한 기술적 환경변화에 따라 SPD 기술에 대한 이해를 돕고자, 금번 호부터는 SPD에 대해서 연재하도록 하겠습니다.

  • PDF

Protection of MOV Thermal Runaway and Safety Improvement of SPD using Built-in Instantaneous Trip Device (내장 순시 트립장치를 이용한 MOV의 열폭주 보호와 SPD의 안전성 개선)

  • Kim, Ju-Chul;Jeon, Joo-Sool;Ki, Che-Ouk;Choi, Gyung-Ray;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • SPDs are increasingly being used against lightning and switching surge according to the applicable revised standard and equipotential grounding system. SPDs are equipped usually with a MOV voltage regulating element. The MOV, however, always is exposed to the danger of thermal runaway resulting from inrushing temporary overvoltage and deterioration. In this paper, the authors made two prototype SPDs built-in Instantaneous trip device and analyzed their limiting voltage through test of the MOV breakdown. As the result of the analysis, the SPDs built-in Instantaneous trip device was proven to be effective for protecting MOV against thermal runaway and Instantaneous trip device react for limiting voltage is considered that is applicable to SPD.

Protection Characteristics of Two-Stage Cascade SPD Systems (2단 종속 SPD시스템의 보호특성)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.95-103
    • /
    • 2013
  • Protection of the electrical and electronic equipment against surges in low voltage AC power distribution systems is based on wide applications of surge protective devices(SPDs). Cascade application of SPDs located at the service entrance of a building and near sensitive equipment is intended to ensure the optimal voltage protection level and energy sharing among cascade SPDs. In this paper, when surges impinge at the service entrance of the building of interest, the protection characteristics of two-stage cascade SPD systems were investigated. The influence of the distance between the upstream and downstream SPDs on the voltage protection level and energy sharing of the two-stage cascade SPD systems were analyzed experimentally. It was found that the energy sharing of two-stage cascade SPD systems strongly depends on the distance between the two SPDs and the component of SPD. As the distance between the two SPDs increases, the energy absorbed by the upstream SPD increases while the energy absorbed by the downstream SPD decreases. Consequently, it is desirable to select the upstream and downstream SPDs having the proper energy capability with due consideration of the distance between the two SPDs.

Thermal Runaway Prevention of MOV and Safety Improvement of Power Line System and Internal Electronic Device Circuit Using a Phosphorous Switching Module (인청동 스위칭 모듈을 이용한 전력계통 및 전자기기 내부회로의 MOV 열폭주 방지와 안전성 개선)

  • Kim, Ju-Chul;Choi, Gyung-Ray;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.75-79
    • /
    • 2011
  • The MOV(Metal Oxide Varistor), a voltage limiting element, has been installed in the SPD(Surge Protective Device) or inside the internal circuit of an electronic appliance for protection of the electric power system and electronic device against electrical surge. Such an MOV is exposed, however, to the risk of the thermal runaway resulting from excessive voltage and deterioration. In this paper, a reciprocal action has been tested and analyzed using a phosphorus bronze switching module and the low-temperature solder. And a short current break characteristic test linked with the circuit breaker has been performed to limit the inrush current when the MOV breaks down. It has been proven that the phosphorus bronze switching module installed inside the internal circuit can improve the safety of the power line system and the electronic device.

Protection Effects Associated with the Conditions for the Installations of SPDs (SPD의 설치조건이 보호효과에 미치는 영향)

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Seung-Chil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.60-67
    • /
    • 2006
  • This paper presents the protection effect of surge protective devices(SPDs) according to the conditions of installations. To propose the effective protection measures of information and communication equipments against lightning surges, actual-sized experiments in relation to the protection effects on the positions of installations of SPDs, the length of branch circuit, the wiring methods, and the materials of conduit, were conducted. The effective method of protecting information and communication equipments from lightning surges is to install SPDs in the vicinity of input terminals of each electronic equipments to be protected. The wiring method of connecting an SPD minimizing the length of leads is desirable when point-to-point wiring is to be used.