• 제목/요약/키워드: SPAN Algorithm

검색결과 190건 처리시간 0.026초

B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬 (A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form.)

  • 김덕수;류중현;이현찬;신하용;장태범
    • 한국CDE학회논문집
    • /
    • 제5권3호
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

연속 부하 분담 제어를 이용한 연속 구동 시스템의 속도 및 장력 제어 특성 개선 (Speed and Tension Control of Continuous Strip Processing Line using Continuous Load Balance Control)

  • 송승호;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권9호
    • /
    • pp.503-509
    • /
    • 1999
  • This paper proposes a new speed and tension control algorithm for multi-span continuous strip processing line. In this algorithm the speed reference of each roll is adjusted to make the output force follow the load balance reference using an outer loop controller in cascade. Using the information of the output force of the adjacent roll, it is shown that the strip tension between two rolls can be controlled as the desired value without tension sensor. An experimental set-up which consists of 4 driven and 3 measuring rolls is designed and built for the multi-span speed and tension control. The experimental result reveals conspicuous improvement of tension control performance by the proposed algorithm comparing to the conventional tension feedback controller.

  • PDF

Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm

  • Ghiamat, R.;Madhkhan, M.;Bakhshpoori, T.
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.503-512
    • /
    • 2019
  • The construction of segmental precast concrete bridge is an increase due to its superior performance and economic advantages. This type of bridge is appropriate for spans within 30 to 150 m (100 to 500 ft), known as mega-projects and the design optimization would lead to considerable economic benefits. A box-girder cross section superstructure of balanced cantilever construction method is assessed here. The depth of cross section, (variable along the span linearly), bottom flange thickness, and the count of strands are considered as design variables. The optimum design is characterized by geometry, serviceability, ductility, and ultimate limit states specified by AASHTO. Genetic algorithm (GA) is applied in two fronts: as to the saving in construction cost 8% and as to concrete volume 6%. The sensitivity analysis is run by considering different parameters like span/depth ratio, relation between superstructure cost, span length and concrete compressive strength.

userID 기반의 빠른 메일 차단 알고리즘 (A fasrter Spam Mail Prevention Algorithm on userID based)

  • 심재창;고주영;김현기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.211-214
    • /
    • 2003
  • 스팸메일로 인한 피해가 크게 늘어나고 있어 스팸 필터링과 차단에 관한 연구가 활발하다. 스팸메일 차단에 이메일 주소 대신 userID(사용자아이디)를 비교하여 처리 속도를 빠르게 하는 방법을 제안한다. userID가 중복되어 스팸메일이 통과하는 경우가 2% 정도 발생하는데 해당 도메인을 불량 도메인 목록에 등록해서 차단한다. 제안된 방법은 이메일 주소를 비교하는 방법 보다 DB용량도 줄어 들고, 문자의 비교에서 약 3.7배 속도가 향상된다. userID의 자동등록을 위해 등록되지 않는 메일이 수신되면 비밀단어를 반송하는 방법을 적용하였다.

  • PDF

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

적응형 배열 안테나를 위한 감소 차수 고유 공간 빔형성 알고리즘 (Reduced Rank Eigen-Space Beamforming for Adaptive Array Systems)

  • 현승헌;최승원
    • 한국통신학회논문지
    • /
    • 제33권4C호
    • /
    • pp.336-341
    • /
    • 2008
  • 본 논문에서는 신호의 반 파장 간격으로 안테나 소자를 배치한 빔형성 시스템에서 다이버시티 이득을 얻을 수 있는 빔형성 알고리즘을 제안한다. 제안된 알고리즘은 수신 신호 공간을 스팬(span)하는 고유 벡터들을 이용하여 빔형성 한다. 본 논문에서는 채널 추정을 위한 최적의 고유 공간 차수를 정하기 위한 기준도 제안한다. 제안된 알고리즘을 적용한 빔형성 시스템은 기존의 빔형성 시스템과는 달리 각 퍼짐이 증가함에 따라 다이버시티 이득을 얻어 그 성능이 개선된다. 본 논문은 제안된 알고리즘의 설명과 함께 다양한 컴퓨터 시뮬레이션을 통한 제안 알고리즘의 성능 분석을 제공한다.

Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm

  • Kaveh, A.;Bakhshpoori, T.;Barkhori, M.
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.705-719
    • /
    • 2014
  • Composite steel-concrete box girders are frequently used in bridge construction for their economic and structural advantages. An integrated metaheuristic based optimization procedure is proposed for discrete size optimization of straight multi-span steel box girders with the objective of minimizing the self-weight of girder. The metaheuristic algorithm of choice is the Cuckoo Search (CS) algorithm. The optimum design of a box girder is characterized by geometry, serviceability and ultimate limit states specified by the American Association of State Highway and Transportation Officials (AASHTO). Size optimization of a practical design example investigates the efficiency of this optimization approach and leads to around 15% of saving in material.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.