• Title/Summary/Keyword: SP 혼화제

Search Result 7, Processing Time 0.019 seconds

Rheological Model of Flowable Concrete Considering with Mix Conditions (배합조건에 따른 유동콘크리트의 레올로지 특성모델)

  • Cho, Chang-Geun;Choi, Yeol;Kim, Wha-Jung;Kim, Jeong-Seop
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.251-252
    • /
    • 2009
  • Rheological characteristics of flowable concrete manufactured in domestic products of cement, aggregates, and SP admixtures were investigated by experiments and the predictive model of rheological characteristics of flowable concrete has been newly proposed considering with the effects of the W/C ratio and the dosage of SP admixture.

  • PDF

Flow Experiments and Analysis of Highly Flowable Concrete Considering the Effect of Dosages of SP Admixture and W/C Ratios (SP제 및 물시멘트비 영향을 고려한 초유동 콘크리트의 흐름 실험 및 해석)

  • Cho, Chang-Geun;Kim, Wha-Jung;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.671-677
    • /
    • 2014
  • In this research, flow experiments and simulation of highly flowable concrete has been attempted using a viscoplastic particle method varying with dosages of SP admixture and water-cement (W/C) ratios. Rheological and flow characteristics of flowable concrete manufactured in domestic products of cement, aggregates, and SP admixtures were investigated by experimental programs varying with mix proportions. From experiment, the predictive model of rheological characteristics of flowable concrete has been newly proposed considering with the effects of the W/C ratio and the dosage of SP admixture, and the effect of mixing proportion has also been incorporated into shear stress and strain rate curve of flowable concrete in the current method. A series of L-box flow test of highly flowable concrete varying with dosages of SP admixture and W/C ratios was compared with the proposed model.

Fluidity Performance Evaluation of Low Viscosity Typed Superplasticizer for Cement-Based Materials Incorporating Supplementary Cementitious Materials (혼화재료를 치환한 시멘트 계열 재료에 대한 저점도형 고성능 감수제의 유동 성능 평가)

  • Son, Bae-Geun;Lee, Hyang-Seon;Lee, You-Jeong;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • The aim of the research is to provide a fundamental data of low viscosity typed superplasticizer (SP) on cement-based materials incorporating various supplementary cementitious materials (SCMs). As a relatively new product, low-viscosity typed SP has introduced for high performance concrete with high viscosity due to its high solid volume fraction with various SCMs. However, there are not enough research or reports on the performance of the low viscosity typed SP with cement-based materials incorporting SCMs. hence, in this research, for cement paste and mortar, fluidity and rheological properties were evaluated when the mixtures contained various SCMs such as fly ash, blast furnace slag, and silica fume. From the experiment conducted, it was checked that the low viscosity typed superplasticizer decreased the plastic viscosity of the mixture as well as the yield stress. From the results of this research, it is expected to contribute on introduction of new type SP for high performance concrete or high-viscous cementitious materials.

Experimental Study of Exterior Panel Properties using Ultra High Performance Concrete (UHPC를 활용한 건축용 외장 패널 특성에 관한 실험적 연구)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2022
  • Ultra High Performance Concrete(UHPC) is a construction material that has a low water-binder ratio (W/B), a high-performance chemical admixture(SP), mixing material and steel fiber, and performance superior to that of regular concrete in terms of liquidity and strength. In the study, UHPC was used to prepare construction external panels that can replace existing stone panels. In addition, experiments were conducted to access the effects of differences in chemical admixture input amount, the number of fillers, antifoaming agent and steel fiber. An evaluation, was conducted, such of concrete compressive strength, flexural strength, impact strength, absorption rate, and frost resistance. The results showed compressive strength up to 115.5MPa, flexural strength of 20.3MPa, and an absorption rate of 1%. In this case, impact strength and frost resistance evaluation were satisfied with outward observed.

A Study on the Fluidity of Antiwashout Underwater Concrete Containing Fly Ash (Fly Ash를 사용한 수중불분리 콘크리트의 유동성에 관한 연구)

  • 권중현;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 1998
  • This paper is to investigate the Fluidity of Antiwashout Underwater Concrete containing Fly Ash. The results of study are concluded as follows: the increase in Slump Flow value did not happen in the plain concrete which was replaced cement by Fly Ash; however, the maximum value could reach in the replacement of 30% of Fly Ash by weight of cement in the Fly Ash replaced concrete. On the condition of Fly Ash-Antiwashout Underwater Concrete in expecting 50 cm of the Slump Flow, it was necessary that the usage amount of Superplasticizer be around 1% of unit Binder, and 1.5% in 60 cm of the Slump Flow, respoectively.

  • PDF

A Fluidity Experiment of Pre-Mix Cement for Dispersibility Improvement of Mineral Admixture (광물질 혼화재의 분산성 향상을 위한 프리믹스 시멘트의 유동성 실험)

  • Han, Cheon-Goo;Lee, Hai-Ill;Noh, Sang-Kyun;Kim, Ki-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.90-96
    • /
    • 2009
  • The high rising building construction makes increasing the requirement of high strength concrete. Especially, the workability analysis is related with dispersion of admixture such as SF for improving strength and FA, BS for reducing construction cost and improving durability of Ultra High Strength Concrete which has over 100 MPa of compressive strength is very important. Precisely, decreases dispersion because of lumping situation of each admixture and it causes the workability of admixture is decreased. Therefore, the workability of cement paste is tested for analyze effects of pre-mixed cement for solving those problems with it to this research. The summary of the results are like below. First of all, OBS is increasing workability more than OFS. This result causes that the glassy surface of BS in the OBS is increasing workability and the absorption of admixture of FA in the OFS is decreasing workability. In the case of mixing methods, pre-mixing method is increasing workability more than normal one. This result shows that the normal mixing method is bad dispersion of binders. The other side, the pre-mixing method is good. Furthermore, depending on the mixing time, according to the increasing mixing time such as 30, 60, and 120 seconds, the dispersion of binders and workability turns better.

  • PDF

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.