• 제목/요약/키워드: SON(: Self Organization Networks)

검색결과 6건 처리시간 0.028초

LTE 네트워크에서 SON ANR 기술 분석 (Analysis of Automatic Neighbor Relation Technology in Self Organization Networks of LTE)

  • 안호준;양모찬
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.893-900
    • /
    • 2019
  • 본 논문에서는 LTE 네트워크에서 SON(: Self Organization Networks) 기술 분석을 다룬다. SON은 이전 셀룰러 시스템인 UMTS, GSM과 비교되는 LTE 만의 차별적인 기능이고, 무선 라디오가 변화하는 환경에서 비용 효율적으로 최고의 성능을 도출하는 도구이다. 또한, SON은 운영자가 네트워크의 설정들을 자동화하는 기능이 있으며, 중앙 집중적 계획이 가능하여 수작업에 대한 요구를 감소시켰다. SON은 크게 Self-Configuration, Self-Optimization, Self-Healing의 3가지 범주로 나누어진다. 각각의 큰 범주는 세부적인 기술 내용을 가지고 있고 각 범주의 기술들이 모두 모여서 SON이라는 기술을 완성시키게 된다. 본 논문에서는 각 3가지 범주에서 Self-Configuration의 기술 중 ANR에 대해서 집중적으로 분석하였다.

LTE 자가구성 네트워크에서 MRO 기술 분석 (Analysis of Mobility Robustness Optimization Technology in LTE Self Organization Networks)

  • 양모찬
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1025-1030
    • /
    • 2019
  • 본 논문에서는 LTE 네트워크에서 SON(: Self Organization Networks) 기술 분석을 다룬다. SON은 이전 셀룰러 시스템인 UMTS, GSM과 비교되는 LTE 만의 차별적인 기능이고, 무선 라디오가 변화하는 환경에서 비용 효율적으로 최고의 성능을 도출하는 도구이다. 또한, SON은 운영자가 네트워크의 설정들을 자동화하는 기능이 있으며, 중앙 집중적 계획이 가능하고 수작업에 대한 요구를 감소시켰다. SON은 크게 Self-Configuration, Self-Optimization, Self-Healing의 3가지 범주로 나누어진다. 각각의 큰 범주는 세부적인 기술 내용을 가지고 있고 각 범주의 기술들이 모두 모여서 SON이라는 기술을 완성시키게 된다. 본 논문에서는 각 3가지 범주에서 Self-Optimization의 기술 중 MRO(: Mobility Robustness Optimization)에 대해서 집중적으로 분석하였다.

LTE-Advanced 융합 망에서 서비스 자기-조직화 방법 (Service Self-Organization Method in LTE-Advanced Heterogeneous Networks)

  • 이기성;이종찬
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6260-6268
    • /
    • 2015
  • 상이한 망이 공존하는 LTE-Advanced에서 기존 음성 서비스에 적용된 절차적이고 정적인 제어방식으로는 서비스 연속성을 효과적으로 지원하는 것은 현실적으로 어렵다고 여겨진다. 본 논문에서는 SON를 기반으로 서비스 연속성을 효과적으로 지원하기 위한 서비스 자기-조직화를 제시하고자 한다. SON을 통하여 가입자 단말기는 자신의 현재 상태 및 주변 기지국 정보를 수집하고, 기지국은 내부 및 인접한 기지국 모니터링으로 수집된 정보를 통하여, 관련 제어 데이터를 공유하고 이를 종합 분석하여 서비스 연속성을 자체적으로 조절/제어하는 방법을 제안한다. 서비스 자기-조직화는 단말기 및 기지국의 상태 정보 변화에 따라 관련 기능(여기서 기능은 ISHO, 셀 선정, 자원 할당, 부하 제어, QoS 매핑 등을 의미함)의 설정을 동적으로 제어하고, 각각의 기능들이 변화에 적응하여 조정되고 재구성하는 과정을 주고받으면서 각 기능들이 상호 작용하게 된다. 이러한 동작들이 서비스 자기-조직화를 통하여 서비스 연속성을 만족시키는 방향으로 이루어진다. 자원 이용률과 outage 확률을 성능척도로 하여 수행된 시뮬레이션 결과에 의하면 제안된 방안은 기존 방안에 비하여 더 우수한 성능을 가짐이 확인된다.

비인프라 기반 사물인터넷 구축을 위한 자율네트워킹 기법 (Self-organization Networking Scheme for Constructing Infrastructure-less based IoT Network)

  • 윤주상
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.196-201
    • /
    • 2018
  • 최근 로컬 IoT 네트워크 구축과 관련하여 RPL 프로토콜을 활용하는 다양한 비-인프라 기반 IoT 네트워킹 기법들이 연구 중이다. 특히, RPL 프로토콜은 자율네트워킹과 로컬 네트워크에 존재하는 노드 간 애드혹 경로를 제공하지 못하는 문제를 가지고 있다. 본 논문에서는 비-인프라 기반 IoT 네트워크 구축을 지원하는 자율네트워킹 기법을 제안한다. 제안하는 기법은 저전력 손실 네트워크로 구성된 네트워크 환경에 적용 가능한 자율네트워킹 기법이다. 실험을 통해서 제안한 자율네트워킹 기법의 우수한 성능을 보였다. 특히, 단대단 데이터 발생률과 단대단 지연 측면에서 제안하는 기법의 성능이 우수함을 증명하였다.

지능형 Self-Organizing Network를 위한 설명 가능한 기계학습 연구 동향 (Trend in eXplainable Machine Learning for Intelligent Self-organizing Networks)

  • 권동승;나지현
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.95-106
    • /
    • 2023
  • As artificial intelligence has become commonplace in various fields, the transparency of AI in its development and implementation has become an important issue. In safety-critical areas, the eXplainable and/or understandable of artificial intelligence is being actively studied. On the other hand, machine learning have been applied to the intelligence of self-organizing network (SON), but transparency in this application has been neglected, despite the critical decision-makings in the operation of mobile communication systems. We describes concepts of eXplainable machine learning (ML), along with research trends, major issues, and research directions. After summarizing the ML research on SON, research directions are analyzed for explainable ML required in intelligent SON of beyond 5G and 6G communication.

자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘 (Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks)

  • 도명식;배현숙
    • 대한토목학회논문집
    • /
    • 제28권3D호
    • /
    • pp.307-315
    • /
    • 2008
  • 본 연구의 목적은 수도권 남부 국도 ITS 시범구간인 국도 3호선의 장지IC~곤지암IC구간에서 수집되는 교통자료를 기반으로 자기조직형 신경망 이론을 도입하여 국도구간의 통행시간 추정모형을 개발하는 방안을 제시하는 것이다. 지점 검지기 적정 설치위치와 구간의 연장 및 연도의 토지이용특성이 단속류의 구간통행시간에 영향을 미침을 확인하였으며, 구간 통행시간 추정을 위해 기존의 인공신경망 모형이 가지는 추가학습이 불가능하다는 단점과 신경망 구조의 최적구성이 어려운 점 등을 고려하여 자기조직형 인공신경망 구조방법을 도입하였다. 통행시간 추정결과 기존 검지기에서 수집된 자료와 최적위치에서 수집된 자료를 이용하여 모형을 검증한 결과 통행특성을 가장 잘 반영하는 지점자료를 활용한 모형의 추정력이 우수한 것으로 나타났다. 이러한 시도는 향후 국도 ITS 사업의 설계에서 검지기의 설치 위치 선정에 응용할 수 있을 것으로 기대된다.