• 제목/요약/키워드: SOM 기법

검색결과 101건 처리시간 0.03초

인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석 (Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence)

  • 이서경;김동수;김경동;김영도;류시완
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식 (Insect Footprint Recognition using Trace Transform and a Fuzzy Method)

  • 신복숙;차의영;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1615-1623
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 찾아 개체를 인식하기 위해서, 개선된 SOM 알고리즘과 ART2 알고리즘을 사용하여 인식의 기본 영역을 추출한다. 또한 Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하고 개체를 판단하는 기법을 제안한다. 제안한 기법에서는 모폴로지 기법을 이용하여 region을 먼저 찾고, 개선된 SOM과 ART2 알고리즘을 이용하여 곤충의 크기와 종류에 관계없이 세그먼트를 추출한다. 그리고 곤충 발자국과 같이 다양한 변형이 존재하는 패턴에 적합한 특징값을 찾기 위해서 Trace 변환을 이용하고, 함수의 조합으로 재구성된 Triple 특징값을 이용하여 곤충별로 고유한 패턴을 찾아 인식 실험을 수행한다. 곤충 발자국에서 명확한 발자국과 그렇지 못한 발자국을 자동으로 결정하는 것이 매우 어렵다. 따라서 이와 같이 불확실한 대상을 제외시키지 않고 가능성의 대상으로 판단하고 분류하기 위해서 퍼지 가중치 평균을 이용하여 인식을 수행한다. 제안한 방법에 의한 곤충 발자국의 영역 추출과 인식 실험을 실시하고 그 결과를 제시하였다.

  • PDF

SOM기반 특징 신호 추출 기법을 이용한 불균형 주기 신호의 이상 탐지 (Fault Detection of Unbalanced Cycle Signal Data Using SOM-based Feature Signal Extraction Method)

  • 김송이;강지훈;박종혁;김성식;백준걸
    • 한국시뮬레이션학회논문지
    • /
    • 제21권2호
    • /
    • pp.79-90
    • /
    • 2012
  • 본 연구는 공정신호가 불균형 데이터인 경우 이상 탐지 알고리즘의 성능 개선을 위한 특징 신호 추출 기법을 제안한다. 불균형 데이터란 범주 구분 문제에서 하나의 범주의 속하는 데이터의 비율이 다른 범주의 데이터에 비해 크게 차이나 이상 탐지성능이 크게 저하되는 경우를 의미한다. 공정이 운영되는 경우 얻을 수 있는 이상 신호의 수는 정상 신호에 비해 매우 적기에 이러한 문제를 해결하여 이상 탐지 기법을 적용하는 것은 매우 중요하다. 불균형 문제 해결을 위해 SOM(Self-Organizing Map) 알고리즘을 이용하여 각 노드에 대응되는 가중치를 특징 신호로 간주하여 정상 데이터와 이상 데이터의 비율을 맞춘다. 특징 신호 데이터 집단의 이상 탐지를 위해 클래스 분류 기법인 kNN(k-Nearest Neighbor)과 SVM(Support Vector Machine)을 적용하여 이를 공정 신호 이상탐지를 위해 주로 사용하는 Hotelling's $T^2$ 관리도와 성능을 비교한다. 반도체 공정에서 발생한다고 알려진 공정 신호를 모사하여 신호 알고리즘 성능의 우수성을 검증한다.

자기 조직화 신경망(SOM)을 이용한 협력적 여과 기법의 웹 개인화 시스템에 대한 연구 (Collaborative Filtering System using Self-Organizing Map for Web Personalization)

  • 강부식
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.117-135
    • /
    • 2003
  • 개인화 된 정보를 제공하기 위한 협력 여과 기법에 대한 많은 연구가 이루어지고 있는데, 유사 사용자들을 찾는 과정에서 상관계수와 같은 유사성 척도를 이용하여 모든 사용자와의 유사성을 계산하는 과정을 거친다. 이때 사용자 수가 많아지게 되면, 계산의 복잡도가 지수적으로 증가하게 되는 규모의 문제가 발생한다. 본 연구는 협력 여과 기법에서 주로 사용하는 유사성 척도가 사용자 집단이 커짐에 따라 계산의 복잡도가 지수적으로 증가하는 문제를 해결하기 위한 방안을 제시하는 것이 주목적이다. 규모의 문제를 해결하기 위해 클러스터링 모델 기반 접근 방식을 사용하고 아이템의 선호도 계산을 위해 RPM(Recency, Frequency, Momentary) 기준의 사용을 제안한다. 먼저 SOM을 이용하여 전체 사용자를 사용자 집단으로 클러스터링하고 사용자 집단별로 RFM 기준에 의해 아이템의 점수를 계산하여 선호도가 높은 순으로 정렬하여 저장한다. 사용자가 로그인하면 학습된 SOM을 이용하여 대상 사용자 집단을 선정하고 미리 저장된 추천 아이템을 추천한다. 추천결과에 대해 사용자가 평가하면 그 결과를 이용하여 현 시스템의 개정 여부를 결정한다. 제안한 방안에 대해 MovieLens 데이터 셋에 적용하여 실험한 결과 기존의 협력적 여과 기법에 비해 추천 성능이 비교적 우수하면서도 추천 시스템 운용시의 계산 복잡도를 일정하게 유지시킬 수 있음을 보였다.

  • PDF

자가 조직화 지도의 커널 공간 해석에 관한 연구 (A New Self-Organizing Map based on Kernel Concepts)

  • 정성문;김기범;홍순좌
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.439-448
    • /
    • 2006
  • Kohonen SOM(Self-Organizing Map)이나 MLP(Multi-Layer Perceptron), SVM(Support Vector Machine)과 같은 기존의 인식 및 클러스터링 알고리즘들은 새로운 입력 패턴에 대한 적응성이 떨어지고 학습 패턴 자체의 복잡도에 대한 학습률의 의존도가 크게 나타나는 등 여러 가지 단점이 있다. 이러한 학습 알고리즘의 단점은 문제의 학습 패턴자체의 특성을 잃지 않고 문제의 복잡도를 낮출 수 있다면 보완할 수 있다. 패턴 자체의 특성을 유지하며 복잡도를 낮추는 방법론은 여러 가지가 있으며, 본 논문에서는 커널 공간 해석 기법을 접근 방법으로 한다. 본 논문에서 제안하는 kSOM(kernel based SOM)은 원 공간의 데이터가 갖는 복잡도를 무한대에 가까운 초 고차원의 공간으로 대응시킴으로써 데이터의 분포가 원 공간의 분포에 비해 상대적으로 성긴(spase) 구조적 특정을 지니게 하여 클러스터링 및 인식률의 상승을 보장하는 메커니즘 을 제안한다. 클러스터링 및 인식률의 산출은 본 논문에서 제안한 새로운 유사성 탐색 및 갱신 기법에 근거하여 수행한다. CEDAR DB를 이용한 필기체 문자 클러스터링 및 인식 실험을 통해 기존의 SOM과 본 논문에서 제안한 kSOM과 성능을 비교한다.

퍼지 스트레칭과 SOM 기반 양자화를 이용한 어깨 초음파 영상에서의 인대 손상 영역 추출 (Tear Extraction from Ultrasonic Images of Shoulder using Fuzzy Stretching and SOM Based Quantization)

  • 김윤호;김민하;송유선;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.9-12
    • /
    • 2017
  • 본 논문에서는 어깨 초음파 영상을 분석하여 인대 손상(Tear) 영역을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 ROI(Region of Interest) 영역을 추출하고 추출된 ROI 영역에서 사다리꼴 형태의 소속 함수를 적용한 퍼지 스트레칭 기법을 이용하여 명암 대비를 높인다. 명암 대비가 조정된 ROI 영역에서 밝기 평균 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화가 적용된 ROI 영역에서 워터쉐드 기법을 적용하여 연골과 힘줄의 후보 영역들을 추출한다. 추출된 연골과 힘줄의 후보 영역들 중에서 위에서 아래로 스캔하여 수평 너비가 가장 큰 영역에 해당하는 힘줄 영역의 상단 경계선을 추출한다. 그리고 아래에서 위로 스캔하여 수평 너비가 가장 큰 영역의 상단 경계에 스플라인 곡선을 적용하여 연골 영역의 상단 경계선을 추출한다. 힘줄 영역의 상단 경계선과 연골 영역의 상단 경계선 양 끝에 2차 함수 곡선을 적용하여 곡선 사이의 양자화할 영역을 추출한 후, SOM 기법을 적용하여 인대 손상 후보 영역을 양자화한다. 양자화된 인대 손상 후보 영역을 분석하여 어깨 힘줄의 손상 영역과 비손상 영역을 구분하고 인대 손상(Tear) 영역을 추출한다. 제안된 방법을 어깨 힘줄이 있는 초음파 영상을 대상으로 실험한 결과, 인대 손상(Tear) 영역이 비교적 정확히 추출되었다.

  • PDF

SOM를 이용한 초음파 영상에서의 충수염 추출 (Appendicitis Extraction of Ultrasonographic Images using SOM)

  • 배준호;양지현;박승익;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.73-75
    • /
    • 2014
  • 본 논문에서는 원본 초음파 영상에서 스케일을 측정한 후, 영상의 확대 비율을 분석하여 충수염 객체의 크기에 대한 범위를 설정한다. 제안된 방법은 초음파 영상에서 ROI 영역을 추출한 후, 사다리꼴 타입의 소속 함수를 이용한 Fuzzy 이진화와 8방향 윤곽선 추적 기법을 적용하여 잡음을 제거한 후에 근막을 추출한다. 추출된 복부 근육의 근막 하단 경계선을 Cubic Spline 보간법을 이용하여 근막의 하단 영역을 추출한다. 초음파 영상의 근막을 기준으로 근막 영역을 제거한 후, SOM(Self-Organizing Map) 알고리즘을 이용하여 충수염의 후보 영역을 추출한다. 추출된 충수염의 후보 영역에 8방향 윤곽선 추적기법을 적용하여 충수염을 추출한다. 제안된 방법을 초음파 영상에 적용하여 실험한 결과, 기존의 충수염 추출 방법보다 충수염 영역이 비교적 정확히 추출되고 충수염의 크기를 측정할 수 있는 것을 실험을 통하여 확인하였다.

  • PDF

퍼지 추론 기법과 SOM 알고리즘을 이용한 콘크리트 슬래브 표면의 균열 추출 (Extraction of Concrete Slab Surface Cracks using Fuzzy Inference and SOM Algorithm)

  • 김광백
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.38-43
    • /
    • 2012
  • 콘크리트 건물의 보수 작업은 표면에 발생하는 균열을 정확하게 계측함으로써 비용적인 측면과 안전성이 결정된다. 하지만 표면에 발생한 균열은 대부분 점검자에 의해 수작업으로 계측되기 때문에 시간적 측면에서 비효율적이다. 또한 콘크리트 표면의 균열은 영상 획득 과정에서 빛이나 외부 환경에 의해 훼손되는 경우가 발생한다. 또한 콘크리트 표면이 고르지 않은 영상이나 잡음이 많이 존재하는 콘크리트 영상에서는 기존의 균열 추출 방법으로는 균열이 검출되지 않는 경우가 발생한다. 따라서 본 논문에서는 형태가 왜곡되지 않은 균열뿐만 아니라, 잡음과 유사한 미세 균열까지 효과적으로 추출하고 분석할 수 있는 방법을 제안한다. 본 논문에서 제안하는 균열 검출 방법은 콘크리트 슬래브 표면의 R, G, B 채널 값을 퍼지 기법에 적용하여 후보 균열 영역을 추출한 후, 추출한 후보 균열 영역에 SOM 기법을 적용하여 1차적으로 잡음 영역을 제거한다. 잡음이 제거된 후보 균열 영역에서 밀도 정보를 이용하여 2차적으로 세부적인 잡음 영역을 제거하여 최종적으로 균열 영역을 검출한다. 실제 콘크리트 균열 영상을 대상으로 실험한 결과, 다양한 콘크리트 균열 영상에서 기존의 균열 추출 방법보다 균열 검출 성능이 개선되었음을 확인하였다.

부분방전 패턴인식기법으로서의 Neural Network 알고리즘 비교 분석 (A Comparative Study on Neural Network Algorithms for Partial Discharge Pattern Recognition)

  • 이호근;김정태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

대용량 데이터 처리를 위한 하이브리드형 클러스터링 기법 (A Hybrid Clustering Technique for Processing Large Data)

  • 김만선;이상용
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.33-40
    • /
    • 2003
  • 데이터 마이닝은 지식발견 과정에서 중요한 역할을 수행하며, 여러 데이터 마이닝의 알고리즘들은 특정의 목적을 위하여 선택될 수 있다. 대부분의 전통적인 계층적 클러스터링 방법은 적은 양의 데이터 집합을 처리하는데 적합하여 제한된 리소스와 부족한 효율성으로 인하여 대용량의 데이터 집합을 다루기가 곤란하다. 본 연구에서는 대용량의 데이터에 적용되어 알려지지 않은 패턴을 발견할 수 있는 하이브리드형 신경망 클러스터링 기법의 PPC(Pre-Post Clustrering) 기법을 제안한다. PPC 기법은 인공지능적 방법인 자기조직화지도(SOM)와 통계적 방법인 계층적 클러스터링을 결합하여 두 과정에서는 군집의 내부적 특징을 나타내는 응집거리와 군집간의 외부적 거리를 나타내는 인접거리에 따라 유사도를 측정한다. 최종적으로 PPC 기법은 측정된 유사도를 이용하여 대용량 데이터 집합을 군집화한다. PPC 기법은 UCI Repository 데이터를 이용하여 실험해 본 결과, 다른 클러스터링 기법들 보다 우수한 응집도를 보였다.