• Title/Summary/Keyword: SOIL HEAVY METAL$SO_2$$NO_2$

Search Result 13, Processing Time 0.033 seconds

Studies on the Relation between Acid Deposition and Soil Chemical Properties in Forest Areas - Especially in Gyeongsangnam-Do Province - (산성강하물과 산림토양 화학성의 관련성에 관한 연구 - 경상남도 지역을 중심으로 -)

  • Lee, Chong-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.260-267
    • /
    • 2008
  • This study was carried out to investigated the relation between air depositions and soil properties in Gyeongsanman province. Soil pH was average 4.40 in regions, and was the highest soil pH value in Miryang-sanne(pH 5.02), the lowest pH value in Namhae-seomyeon(pH4.08). Soil pH, soil organic matter content, avail phosphorus, K, Ca and cation exchange capacity(CEC) were significantly different among regions(p<0.05). Pb in Heavy metal content was 3.86mg/kg average value, and was the highest in Keo-je region(9.87mg/kg), the lowest in Mryang-sanne (0.86mg/kg). Zn, Cd, Cr and Ni were significantly different among regions(p<0.05). Correlation between rainfall pH and soil properties were positive in soil $pH(r=0.7826^{**})$, Ca$(r=0.6278^*)$, Mg$(r=0.5841^*)$, CEC$(r=0.6341^{**})$ and Cd$(r=0.5995^*)$, and were negative in Pb$(r=-0.5283^*)$. Correlation between $SO_2$ concentration and soil properties was negative in soil pH$(r=-0.6796^{**})$, Ca$(r=-0.5810^*)$, Mg$(r=-0.5522^*)$) and CEC$(r=-0.5905^*)$. Correlation between $NO_2$ concentration and soil properties were positive in organic matter $(r=0.6208^*)$, K$(r=0.5380^*)$. It was predicted that rainfall and $SO_2$ concentration would affect soil acidification, and soil heavy metal content related Cd and Pb. Others soil heavy metal were not related.

Distribution of $NO_3\;^-,\;SO_4\;^{2-}$ and Heavy Metals in Some Urban-forest Soils of Central Korea (중부 지역 도시 자연녹지 토양중 $NO_3\;^-,\;SO_4\;^{2-}$ 및 중금속 분포)

  • Kim, Kye-Hoon;Park, Soon-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.351-357
    • /
    • 2000
  • This study was carried out to find out characteristics and contamination status of the urban-forest soils. Both topsoil (0-20 cm) and subsoil (40-60 cm) samples were collected from Namsan, Changdeok-palace, Seongjusan and Odaesan (control). The samples were analyzed for physicochemical properties, heavy metal (Cd, Cu, Pb, Zn) and anion $(NO_3\;^-,\;SO_4\;^{2-})$ contents. Soil pH of Odaesan was the highest followed by Namsan, Changdeok-palace and Seongjusan. The anion concentrations of the soil samples were in the order of Namsan, Seongjusan > Changdeok-palace > Odaesan. The relationships between soil pH and the anion concentrations showed highly significant negative correlation, which indicated acidification of soil due to air pollutants such as $NO_3\;^-$ and $SO_4\;^{2-}$ was going on. The heavy metal contents of the soils of urban-forest were higher than those of control. Heavy metal contents in the topsoil were higher than those in the subsoil. Since urban-forest soils were quite vulnerable to acidification and heavy metal accumulation due to chronic exposure to air pollutants such as automobile exhaust, a comprehensive countermeasure not to deteriorate urban-forest ecology must be prepared in the near future.

  • PDF

Determining Heavy Metal (loid) Stabilization Materials and Optimum Mixing Ratio: Aqueous Batch test

  • Oh, Seung Min;Oh, Se Jin;Kim, Sung Chul;Lee, Sang Hwan;Ok, Yong Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.540-546
    • /
    • 2014
  • Acid mine drainage sludge (AMDS) has been classified as mine waste and generally deposited in land. For this reason, studies have been conducted to examine the possibility of recycling AMDS as an amendment for heavy metal stabilization in soil. The main objective of this study was to evaluate heavy metal stabilization efficiency of AMDS comparing with the widely used lime stone. Also, optimum mixing ratio was evaluated for enhancing heavy metal stabilization. AMDS and limestone were mixed at the ratio of 0:100, 25:75, 50:50, 75:25, and 100:0 with five different heavy metal solutions ($100mg\;L^{-1}$ of $NaAsO_2$, $CdCl_2$, $CuCl_2$, $Pb(NO_3)_2$, and $ZnSO_4{\cdot}7H_2O$). The amendments were added at a rate of 3% (w/v). In order to determine the stabilization kinetics, samples were collected at different reaction time of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 minutes. The heavy metal stabilization by AMDS was faster and higher than those of limestone for all examined heavy metals. While limestone showed only 20% of arsenic (As) stabilization after 1,024 minutes, 96% of As was stabilized within 1 minute by AMDS. The highest effect on the stabilization of heavy metal (loid) was observed, when the two amendments were mixed at a ratio of 1:1. These results indicated that AMDS can be effectively used for heavy metal stabilization in soil, especially for As, and the optimum mixing ratio of AMDS and lime was 1:1 at a rate of 3% (w/v).

A Study on SPI(soil pollution index) in City Land

  • Kim, Young-Sik;Kim, Gi-Sun;Song, Mi-Ra
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.502-505
    • /
    • 2007
  • To estimate the soil quality of Miryang area, soil analysis were conducted according to the city and out of city of soil expenses at according to analysis components and heavy metal pollution of irradiation sampling sites. The through soil components the principal element about the 71% $SiO_2\;and\;Al_2O_3$, the pH of field area near the city center was lower than that of the other field area, which indicated that this acidification was probably attributed to the acid rain caused by the traffic exhaust gas such as $SO_x\;and\;NO_x$. Acidification was more severe in the field area than in the farming land. The concentration of five heavy metals such as Cu, Cd, Pb, As and Cr were found to be lower than the standard of soil pollution. An assessment using the SPI(Soil Pollution Index), which was developed to estimate an overall soil quality, was performed. Each SPS(Soil Pollution Score) were evaluated with the results of the data from this study. The soil quality of most area of Miryang land was determined to Class 1, which indicated that the soil was healthy.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Investigation of Soil Contamination at Major Roadside in Seoul - I. Manguro in Chungnanggu - (서울시 주요 도로변의 토양오염 조사 - I. 중랑구 망우로 주변 토양 -)

  • Kim, Kwon-Rae;Ryu, Hyung-Ju;Chung, Jong-Bae;Kim, Kye-Hoon
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • The objectives of this study were to investigate the contamination of the soils around the major roadsides in Seoul and to accumulate base-line data. Fifty topsoils ($0{\sim}5$ cm) and 48 subsoils ($20{\sim}50$ cm) were collected from 50 sampling sites near Manguro in Chungnanggu. The samples were air-dried, passed through 2-mm sieves, and analyzed to determine the physicochemical properties and the contents of heavy metals (Cd, Cu, Pb, Zn) and anions (Cl, $NO_3$, $SO_4$). Soil textures of top- and subsoils were mainly loamy sand and sandy loam, respectively. Average $_PH$ of top- and subsoil was approximately 7.5, much higher than that of the forest soils in Seoul. Average heavy metal contents were lower than the levels allowed by the Soil Environment Conservation Act of Korea, whereas much higher than those of the forest soils. Contents of some heavy metals were higher than the maximum allowed levels. Anion concentrations were also much higher than those of the forest soils. A careful management to prevent the aggravation of the present contamination level and the diffusion of contaminants is recommended.

  • PDF

Vertical Distribution of Heavy Metals in Paddy Soil Near Abandoned Metal Mines (폐금속광산 주변 논토양 중 중금속의 수직분포 특성)

  • Jung, Goo-Bok;Kim, Won-Il;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.297-302
    • /
    • 2001
  • To compare the relationship between the vertical distribution of heavy metals in paddy soil and soil pH near four abandoned metal mines, 40 paddy surface soils $(0{\sim}15\;cm)$ and 12 soils with soil depths ($0{\sim}20$, $20{\sim}40$, $40{\sim}60$, $60{\sim}80$ and $80{\sim}100$ cm) were collected. Both total and extractable heavy metal contents in soils were analyzed after acid digestion $(HNO_3:HClO_4:H_2SO_4)$ and 0.1 N-HCl extraction, respectively. The 0.1 N-HCl fraction ratio over total contents of Cd, Cu, Pb, and Zn were 57, 30, 23, and 19% respectively. Vertical distribution of heavy metals varied considerably among the different mines. In Choil mine, there was no difference in concentrations of all the metals with soil layers. However, Cu and Pb contents in Gahak mime were high at $0{\sim}20\;cm$ depth, and Zn was high at $0{\sim}40\;cm$ depth. In Sinyemi mine, Cd and Cu contents were high at $0{\sim}40\;cm$ depth. Cd, Cu, and Pb contents in Okcheon mine were high through all soil profiles up to 100 cm soil depth. The 0.1 N-HCl fraction ratio over total contents of heavy metals with soil layers were very high at $0{\sim}20\;cm$ depth. As soil depth increased, fraction ratio of heavy metals decreased at the high soil pH (Gahak, Sinyemi, and Choil mines). However, the ratios of Cd, Cu, and Pb in Okcheon mine, having a relatively lower soil pH than other sites, were relatively similar through all the soil profiles up to 100 cm soil depth. Therefore, it was estimated that the mobility and availability of heavy metals in soils were affected by soil pH.

  • PDF

A Study on the Characteristics of Soil in the Asian Dust Source Regions of Mongolia (황사발원지 (몽골) 토양에 대한 특성 분석)

  • Kim, Deok-Rae;Kim, Jeong-Soo;Ban, Soo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.606-615
    • /
    • 2010
  • This study aims to identify the characteristics of soil in Mongolia, one of the major Asian dust sources that influence the Korean Peninsula. Soil particle size was analyzed and the result shows that sand (57.5~97.3%) was identified prominently in most regions, followed by silt (2.5~34.7%) and clay (0.0~7.8%). Soil pH of the covered regions were in the range 7.1~10.1, either weak alkaline or strong alkaline. Analysis of ion species in the soil samples exhibited that $Na^+$ ($91.9\;mg\;kg^{-1}$), $Cl^-$ ($65.9\;mg\;kg^{-1}$), and $Ca^{2+}$ ($53.5\;mg\;kg^{-1}$) were detected more in the soil than other species such as ${SO_4}^{2-}$ ($19.2\;mg\;kg^{-1}$), ${NO_3}^-$ ($46.6\;mg\;kg^{-1}$), ${NH_4}^+$ ($3.9\;mg\;kg^{-1}$), $K^+$ ($22.0\;mg\;kg^{-1}$), and $Mg^{2+}$ ($10.2\;mg\;kg^{-1}$). As for heavy metal content in the soil, concentrations of soil-borne metals including Fe, Al, Ca, Mg, and K tended to be high, while metals that come from manmade sources Pb, Cd, Cr, V, and Ni were remarkably low. The concentration of organic carbon (OC) was relatively high at $15.9\;{\mu}g\;mg^{-1}$, while elemental carbon (EC), directly released in the process of fossil fuel combustion, was not detected at all or found in very small amounts. The result indicates that pollution from manmade sources scarcely occurred. The analysis results from this study may contribute to improving modeling accuracy by providing input data for Asian dust prediction models, and be used as base data for determining the process of physiochemical transformation of Asian dust during long-range transport.

Case Study of Hydrochemical Contamination by Antimony Waste Disposal in Korea (국내 안티몬폐기물에 의한 수질화학적 오염 사례연구)

  • Jeong, Chan-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.471-482
    • /
    • 2008
  • This study was carried out to investigate the contamination characteristics of surface water, soil water and groundwater around and in antimony waste landfill site in Wonsung-ri, Yeonki-kun, Chungnam. The waste disposed in the study was excavated and transported to the other site in several years ago. For this study, we collected 35 water samples including groundwater, soil water and surface in the study site and also collected 2 groundwater samples from a comparison site. The data of chemical analysis of soil water samples show the antimony concentration of $48.75{\sim}74.81\;ppb$, which is much higher than groundwater in a comparison site and is highly excess than regulation level for a drinking water of some advanced countries. A relatively high antimony concentration was detected in three stream water samples nearby landfill site and two groundwater samples. Fe and Mn contents in soil water and stream water were measured as maxium 6.5 mg/L and 7.3 mg/L, respectively. Although other heavy metals of water samples in the study site are higher concentration than water sample of comparison site, their absolute levels are lower than regulation level for a drinking water. The chemical data of water samples are plotted widely from Ca - $HCO_3$ type to Ca - ($Cl +SO_4+NO_3$) type. Some groundwater show high contents of potassium and nitrate, which would come from fertilizer and sewage. Conclusively, some heavy metals including antimony have been still remained under the soil surface of the landfill site in the past. These metals have leaked out into nearby stream and groundwater system, and threaten the ecology, crops and the health of residents in this site. Therefore, the government have to prepare the strategy to prevent the diffusion of heavy metals into aquatic environment and have to process the reclamation work for contaminated site. It is also necessary to make a regulation level of the antimony concentration for a drinking water and soil environment in Korea.

Effects of free metal ions and organo-metal complexes on the absorption of lead and cadmium by plants (식물에 의한 납, 카드뮴 흡수 기작에 미치는 자유이온 및 유기산-중금속 복합체의 영향)

  • Lee, Mina;Seo, Byounghwan;Kim, Kwon-Rae
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • Heavy metals exist in soils in various chemical forms including free metal ions and organo-metal complexes. The ratio of free metal ions has been known to be highly associated with the plant absorption of heavy metals. This study aims to understand the effect of free ions and organo-metal complexes on the absorption of lead (Pb) and cadmium (Cd) by plants. For this, lettuce grown in a hydroponic system for 28 days was consequently grown another 48 hours using Pb and Cd solutions. The ratios of free ion to organo-metal complexes in the solutions were adjusted at 100:0, 90:10, 70:30, 60:40 by four different organic acids (citric, oxalic, acetic, and humic acid). After that, the concentration of Pb and Cd in lettuce were analyzed. The Pb and Cd absorption by lettuce was more relied on the types of organic acids treated and the type of metals rather than the ratio of free metal ions. For example, citric acid increased the Pb absorption while it decreased the Cd absorption by lettuce. There was no significant relationship between free metal ion ratios and both Pb and Cd uptake by lettuce. It could be explained that citric acid, a relatively higher molecular weight organic acid, has higher ion binding capacity, so it forms organo-Pb complex easily due to the higher affinity of Pb on the binding site in comparison with Cd. Consequently, this complexation would assist Pb uptake by lettuce.