• Title/Summary/Keyword: SOIL BULK DENSITY

Search Result 381, Processing Time 0.03 seconds

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Composting Impacts on Soil Properties and Productivity in a Fluvio-marine Deposit Paddy Field (하해혼성 평야지 논토양의 부산물퇴비 시용효과)

  • Yang, Chang-Hyu;Kim, Byeong-Su;Yoo, Chul-Hyun;Park, Woo-Kyun;Yoo, Young-Seok;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • Objective of this research was to identify by-product composting impacts on paddy soil properties and rice yield. Research was conducted in Iksan (soil was identified as a Jeonbug series) located in Honam plain area from 2001 to 2004. Composts, such as cow manure sawdust compost(CMSC), Chicken manure sawdust compost(ChMSC) and Pig manure sawdust compost(PMSC) were treated in the reseach plots for every, 2, and 3 year term. Some physical properties, such as, soil hardness, and bulk density tended to decrease with application of compost and decreased in order of CMSC, ChMSC, and PMSC, while surface soil depth and porosity were increased in order of CMSC, PMSC, and ChMSC. Some chemical soil properties, such as organic matter, available phosphorus, available silicate, and exchangeable cations were increased with application of compost and every year application plots. Nitrogen uptake was higher in order of CMSC, ChMSC, SF, and PMSC. Nitrogen use efficiency was higher in order of CMSC, ChMSC, SF, and PMSC. Rice yields was increased in all application plot of CMSC, in every other year application plot ChMSC and PMSC compared with SF($5.07Mg\;ha^{-1}$). Also average rice yield on years were increased in all application plot of CMSC and in every other year application plot ChMSC, while decreased in all application plot of PMSC compared with SF($5.27Mg\;ha^{-1}$). Head rice ratio and perfect grain ratio on hulled rice was high in all application plot of PMSC and in every year, in every other year app lication plot of ChMSC while its lowered percentage of 10~13 caused by application of CMSC compared with SF.

The Weathering and Chemical Composition of Young Residual Entisols in Korea (잔적 암쇄토의 화학조성과 풍화도)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sun-Kwan;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2001
  • The weathering rates and change of chemical composition of 6 residual Entisols derived from granite, granite-gneiss, limestone, sandstone, shale, amd basalt in Korea were studied. The chemical composition of each profile with parent rocks were determined using XRF with the physico-chemical properties and the morphology of soils. In the A horizons of all the soils except Euiseong series, the content of clay, organic matter and cation exchange capacity(CEC) showed higher than those of C horizon, but bulk density and pH showed lower than C horizon. Clay content in the soil from sandstone was decrease with soil depth, which may caused by the elluriation. In total element analysis. $SiO_2$ was high in the soil from granite. granite-gneiss, sandstone and compare with basalt and limestone. $Fe_2O_3$ and MgO was high in the soil from basalt, limestone and shale compare with granite. granite-gneiss and sandstone. And ignition loss was particularly high in the soil from basalt and limestone. The rate of element loss was higher in base cations(Ca, K, Mg, Na) than Si, Al, Fe in the soils. The concentrations of $TiO_2$ in the A horizon compare with that of the C horizon was due to resulting from losses of other less stable elements existed. Considering with relative rate of each elements in soils, $SiO_2$ and $Al_2O_3$ which originated from sandstone and granite, granite-gneiss, sandstone, shale, and basalt were lost higher than those from lime tone, but loss of basic cations were more in the soil from limestone which may be rapid weathering of calcite. The magnitude of losses of the overall elements were increased in the order of the soils from sandstone and granite ${\gg}$ limestone and shale) granite-gneiss and basalt.

  • PDF

Effects of applied biochar derived from spent oyster mushroom (Pleurotus ostreatus) substrate to Soil Physico-chemical Properties and crop growth responses (느타리버섯 수확후배지 바이오차 시용이 토양 이화학성 및 작물 생육에 미치는 영향)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.73-82
    • /
    • 2023
  • This study was conducted to investigate the effect of soil physico-chemical properties and crop growth responses for application of biochar derived from substrate with post harvest of oyster mushroom. The biochar was produced at 450~600℃ using a top-light up draft gasifier (TLUD) production system. As a result of elemental analysis, the biochar used was C 76.2%, H 2.5%, N 3.2%, and H/C was 0.39, which met the international certification standards for biocarbons (IBI) below 0.7. The chemical properties were 10.1 for pH, 1.0% for P2O5, 1.8% for K2O, and 2.5% for CaO. The application rates of biochar were 0, 100, 200, 300, and 500 kg/10a. For cultivation of chinese cabbage and welsh onion, soil organic matter (OM), total nitrogen (T-N), total carbon (T-C), Ex.cation K contents and cation exchange capacity (CEC) in the treatments were increased compared to the no treatment. In addition, the bulk density was lowered and the porosity was increased, improving the soil physical properties in the treated soil. The growth of chinese cabbage and green onion increased with the application of biochar, but the yields of chinese cabbage and green onion did not significantly different among the treatments. Soil carbon sequestration in the treatments enhanced with increasing the amount of biochar application. It is expected to apply the biochar derived from spent oyster mushroom substrate in the eco-friendly farm soil management, improving soil physico-chemical properties.

Characteristics of sintered fly ash-clay body prepared by slip processing and its applicability for foundation soils (슬립 공정으로 제조된 비산재-점토 계 소결체의 물성 및 기반재로의 적용특성)

  • Kang, Seung-Gu;Lee, Yeong-Saeng
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.271-276
    • /
    • 2008
  • The civil engineering properties for the coal fly ash produced from a power plant mixed with sintered powders made from the fly ash-clay slip system were measured and its applicability for the foundation soils was investigated. The F-slip whose dispersion state is 'not good' and C-slip which is re-flocculated by adding a flocculant to a well-dispersed slip were fabricated and then sintered. The sintered body made from C-slip had more uniform microstructure than that of F-slip, therefore, the bulk density and compressive strength were improved. The civil engineering properties such as compression index, compressive strength, permeability coefficient of fly ash were improved by mixing $0.84{\sim}2\;mm$ powders obtained by crushing a sintered body made from C-slip. Therefore, the applicability of mixed powders composing of fly ash and sintered body made from C-slip was confirmed to foundation soils due to its improved civil engineering properties.

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

Taxonomical Classification and Genesis of Yongheung Series in Jeju Island (제주도 토양인 용흥통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.478-485
    • /
    • 2009
  • This study was conducted to reclassify Yongheung series based on the second edition of Soil Taxonomy and to discuss the formation of Yongheung series in Jeju Island. Morphological properties of typifying pedon of Yongheung series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon contains 3.2~3.4% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than $0.90Mg\;m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 15 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol or Alfisol. The typifying pedon has 0.9 % or more organic carbon in the upper 15 cm of the argillic horizon and accordingly, can be classified as Humult. It has a clay distribution in which the percentage of clay does not decrese from its maximum amount by 20% or more within a depth of 150 cm from the mineral soil surface, and keys out as Palehumult. Also that meets the requirements of Typic Palehumult. That has 35 % or more clay at the particle-size control section and has mesic soil temperature regime. Yongheung series can be classified as fine, mixed, thermic family of Typic Palehumults, not as fine, mixed, thermic family of Typic Hapludalfs. Most soils distributed in the southern coastal areas in Jeju island which have a humid climate are developed as Andisols. But Yongheung series distributed in this areas and derived from mainly trachyte, trachytic andesite, and volcanic ash are developed as Ultisols.

Changes in Soil Properties and Some Problems Induced by Leveling of Paddy Land in Yeongnam Area (경지정리(耕地整理) 답토양의 특성변화 조사(調査))

  • No, Young-Pal;Jung, Yeun-Tae;Park, Chang-Young;Park, Rae-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 1983
  • To find out problems and changing soil properties induced by leveling of paddy, a field survey was carried out with questionares to farmers of 68 project areas (990 farmers). The soil characteristics between natural soils and cut out sites was compared with soil samples taken from 37 project areas. More than 70 percents of farmers answered to the questionares expressed satisfaction on the paddy land leveling project; however, some farmers replied dissatisfaction that the arable land was decreased the soil productivity due to loss of surface soil or insufficient surface leveling, that the government support was insufficient and that transplanting of rice might be delayed due to retardation of the project. 1. The rate of cut out soils during the land leveling on plain terrain was about 15.3%, but the rates on gently sloped terrain (2-7% slopes) and sloped terrain (7-15% slopes) were relatively high showing 25.9% and 45%, respectively. 2. The deterioration of physical properties was clear in cut out site where the hardness and bulk density increased and the porosity and the rate of water stable aggregate decreased. 3. The degree of deterioration of physical properties on the Diluvial terrace was more severe than on plains or sloped alluvial fans and valleys. The decrease of available phosphorous and the content of organic matter in the cut out place due to land leveling were prominent. 4. The rice yield from cut site was decreased by 28% comparing with that from natural soils.

  • PDF

Effects of Fly Ash and Zeolite Application on Amount of Irrigation Water in Dry Seeded Rice (벼 건답직파(乾畓直播) 재배시(栽培時) 석탄회(石炭灰) 및 제오라이트 시용(施用)이 관개수량(灌漑水量)에 미치는 영향(影響))

  • Kang, Hang-Won;Ko, Ji-Yeon;Park, Hyang-Mee;Kang, Ui-Gum;Lim, Dong-Kyu;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.207-211
    • /
    • 1996
  • This study was conducted in the sandy loam soil to find out the effects of fly ash and zeolite applications on saving of irrigation water which was required great quantities during the cultivation days of dry seeded rice. Total water loss was reduced so rapidly in the early growth stage that n was the least in the 18th day after irrigation. After that day it was increasd due to the growth development and the rising temperature. In the daily mean of decreasing water level during the whole irrigation days, control was 47.7mm but the treatments of fly ash and zeolite were 31.8mm and 35.8mm respectively Amounts of the presumed irrigation water of fly ash and zeolite treatments were lower about 29.1% and 20.9%. respectively than that of control during the whole irrigation days These gaps between control and amendment treatments were greater in the early growth stage than in the late stage Hardness, bulk density and the ratio of solid phase in the soil after experiment were the highest in the fly ash treatment and those of control and zeolite treatments were showed the same trends each other. Amounts of water percoration of control and zeolite treatments in the soil were increased 8.2% and 2.6% respectively in comparision with those in the soil after amendment application, but that of fly ash treatment was decreased 42.5%, In contrast to the water percoration of control in the soil after experiment, those of fly ash and zeolite treatments were decreased 76% and 32%.

  • PDF

Studies on the Agricultural Use of the Water-swelling Polymer -I. Basic Experiment (수팽윤성(水膨潤性) 고분자(高分子) 화합물(化合物)의 농업적(農業的) 이용(利用)에 관(關)한 연구(硏究) -제(第) I 보(報) 기초시험(基礎試驗)을 중심(中心)으로)

  • No, Yeong-Pal;Jung, Yeun-Tae;Chung, Gun-Sik;Kim, Young-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.209-216
    • /
    • 1987
  • The experiments were carried out in lab. as well as in pots, to develop the agricultural usage of water swellable polymer, a kind of polyacrylic acid(K-sorb) synthesized by the Korea Advanced Institute of Science & Technology (KAIST) recently. The changes of soil physical properties and the influences to crops were investigated with various levels of K-sorb. When the K-sorb mixed with soils and soaked up distilled water, the volume of soils increased with the increase of soil available water contents and increase of K-sorb application levels. The rate increase of soil available water was higher in the coarse textured soils than in the fine while the swelling rate of soil volume showed adverse tendencies. A positive linear regression was observed between the contents of available soil water and levels of K-sorb. K-sorb application decreased bulk density and hardness due to the increase of porosity after soybean cultivation. The permeability in coarser textured soils such as sandy and coarse loamy families was decreased with the increase of K-sorb but in the medium textured soils it was opposite. At higher levels of K-sorb, about 0.5%, the permeability abruptly decreased due to dispersion and vertical movement in silty soils, while it was not changed in fine clayey soils but has the same trend with silty soils. In the plot of 0.3% of K-sorb application, the growth of soybean such as number of pods and stem length etc. increased and the yield also increased about 1.2-1.8 times of control. The optimum amounts of K-sorb were slightly different according to soil texture but estimated from regression curves were about 0.2% to 0.35% of soils in dry weight bases.

  • PDF