• 제목/요약/키워드: SOIL

검색결과 29,886건 처리시간 0.05초

납 오염 논토양의 원위치 세척을 위한 FeCl3의 Bench-scale 적용성 평가: 세척전후 토양 특성변화 (Characteristics of Agricultural Paddy Soil Contaminated by Lead after Bench-scale In-situ Washing with FeCl3)

  • 고일하;김지숙;장윤영;양재규;문덕현;최유림;고명수;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.18-26
    • /
    • 2017
  • In a previous study, we assessed the feasibility of ferric chloride ($FeCl_3$) as a washing agent in bench-scale in-situ soil washing to remove Pb from agricultural paddy soil. Herein is a subsequent study to evaluate variations in soil properties after $FeCl_3$ soil washing in terms of fractionation and bioavailability of Pb and chemical properties of the soil. After soil washing, the soil pH decreased from 4.8 to 2.6 and the exchangeable fractions of Pb in the soil increased from 12 mg/kg to 15 mg/kg. Variations in the Pb fractionation of the soil increased Pb bioavailability by almost three-fold; however,the base saturation decreased by 75%. The concentrations of total nitrogen and available phosphate were similar before and after soil washing. The available silicate concentration significantly increased after soil washing but was two times lower than that of soil washed with HCl, which is widely used as a washing agent. This indicates that $FeCl_3$ can be an acceptable washing agent that protects the soil clay structure. The results suggest that soil amendment, such as liming, is needed to recover soil pH, reduce mobility of Pb, and provide exchangeable bases of Ca, Mg, and K as essential elements for the healthy growth of rice plants in reused soil that has been washed.

오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향 (Effects of Soil Remediation Methods on the Biological Properties of Soils)

  • 이용민;김국진;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권3호
    • /
    • pp.73-81
    • /
    • 2013
  • Various remediation methods have been applied to clean soils contaminated with pollutants. They remove contaminants from the soils by utilizing physicochemical, biological, and thermal processes and can satisfy soil remediation standards within a limited time; however, they also have an effect on the biological functions of soils by changing soil properties. In this study, changes of the biological properties of soils before and after treatment with three frequently used remediation methods-soil washing, land farming, and thermal desorption-were monitored to investigate the effects of remediation methods on soil biological functions. Total microbial number and soil enzyme activities, germination rate and growth of Brassica juncea, biomass change of Eisenia andrei were examined the effects on soil microorganisms, plant, and soil organisms, respectively. After soil washing, the germination rate of Brassica juncea increased but the above-ground growth and total microbial number decreased. Dehydrogenase activity, germination rate and above-ground growth increased in both land farming and thermal desorption treated soil. Although the growth of Eisenia andrei in thermal desorption treated soil was higher than any other treatment, it was still lower than that in non-contaminated soil. These results show that the remediation processes used to clean contaminated soil also affect soil biological functions. To utilize the cleaned soil for healthy and more value-added purposes, soil improvement and process development are needed.

밭 토양으로부터 아질산(N2O기체의 배출량 측정과 배출특성 (N2O Emissions from Agricultural Soils and Their Characteristics)

  • 김득수;오진만
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.529-540
    • /
    • 2003
  • A closed chamber system was used for measuring $N_2$0 fluxes from an agriculturally managed upland soil in Kunsan during the growing season from May to July 2002. It is known that soil is one dominant source of atmospheric $N_2$O, contributing to about 57% (9 Tg y $^{-1}$ ) of the total annual global emission. Hence, its increasing emissions and concentrations are largely associated with agricultural activities. In order to elucidate characteristics of soil nitrogen emissions from intensively managed agricultural soils and to understand the roles of soil parameters (soil moisture, soil pH, soil temperature, and soil nitrogen) in the gas emission, $N_2$O soil emissions were measured at every hour during the experimental period (21 days). Soil $N_2$O fluxes were calculated based on changes of $N_2$O concentrations measured inside a closed chamber at every hour. The analysis of $N_2$O was made by using a Gas Chromatography (equipped with Electron Capture Detector). Soil parameters at sampling plots were also analyzed. Monthly averaged $N_2$O fluxes during May, June, and July were 0.14, 0.05, and 0.13 mg-$N_2$O m$^{-2}$ h$^{-1}$ , respectively. Soil temperature and soil pH did not significantly vary over the experimental period; soil temperatures ranged from 12∼$25^{\circ}C$, and soil pH ranged 4.56∼4.75. However, soil moisture varied significantly from 32% to 56% in WFPS. Relationships between soil parameters and $N_2$O fluxes exhibited positive linear relationships. Strong positive correlation ($R^2$ = 0.57, P< 0.0001) was found between $N_2$O flux and sil moisture. It suggests that soil moisture has affected strongly soil $N_2$O emissions during the experimental periods, while other parameters have remained relatively at constant levels. $N_2$O flux from agricultural soils was significant and should be taken account for the national emission inventory.

옥상녹화에서 토심, 토양배합비 및 지피식물에 따른 식재지반 수분 및 온도변화 (Change of the Moisture and Temperature in Planting Ground as Effected by Different Soil Thickness, Soil Mixture Ratios and Ground Cover Plants in the Green Roof System)

  • 주진희;윤용한
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.11-16
    • /
    • 2010
  • This paper has attempted to investigate the change in soil moisture volume and temperature of architecture by planting ground(soil thickness and soil mixture ratio) and ground cover plants(Sedum sarmentosum, Zoysia japonica, Chrysanthemum zawadskii) for middle region green roof system. For this, a test was conducted on the roof of Konkuk University building from April 2009 to October 2009. In terms of treatment, five types(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) depending on soil mixture ratio and two types(15cm, 25cm) by soil depth were created. Results of soil moisture volume by soil mixture ratio in the 15cm soil thickness showed that the difference was significance between simple soil and mixture soil treatment, however, the statistical significance was not recognized according to soil mixture ratio. In case of 25cm soil thickness, soil moisture volume by soil mixture ratio was more higher 7Vol.%~10Vol.% in the mixture soil than simple soil treatment. In terms of districts planted ground cover plants, soil volume moisture differed among plants in the order Zoysia japonica 17.74 Vol.%$34.86^{\circ}C$, district non-planted $27.49^{\circ}C$, Sedum sarmentosum $25.11^{\circ}C$, Chrysanthemum zawadskii $23.08^{\circ}C$, Zoysia japonica $24.45^{\circ}C$ respectively So, concrete surface showed more higher $5^{\circ}C{\sim}15^{\circ}C$ than other things among the all the time. Result of inner temperature of the architecture and soil, it was measured inner of architecture $25.69^{\circ}C$, inner district non-planted $24.29^{\circ}C$, Chrysanthemum zawadskii $23.90^{\circ}C$, Zoysia japonica $24.02^{\circ}C$, Sedum sarmentosum $25.13^{\circ}C$, respectively.

광양만 임해 매립지 느티나무 식재지 토양의 수직적 특성 변화 (Property Changes of Vertical Soil Layers Planted with Zelkova serrata(Thunberg) Makino on the Reclaimed Land from the Sea in the Gwangyang Bay, Korea)

  • 김도균;김용식
    • 한국조경학회지
    • /
    • 제33권2호
    • /
    • pp.60-70
    • /
    • 2005
  • This study was carried out to elucidate the vertical characteristics of soil properties at six planted sites of land reclaimed from the sea, in Gwangyang Bay, Jeollanam-do Province, Korea. Based on the types of planting site, the chemical properties of the vertical soil layers varied. The vertical variation was great in the planting sites $Z_1\;and\;Z_2$, but less varied in the mounded planting sites $Z_3,\;Z_5,\;and\;Z_6$. Major reasons for the vertical variation in soil chemical properties included differences in the accumulation of organic matter, soil disturbance by heavy construction equipment, and heterogeneity of soil properties between soil horizons. As soil depths increased, soil salts varied. The electrical conductivity (ECe) increased in the lower areas of planting sites $Z_1\;and\;Z_2$, and the disturbed, saline planting site $Z_3$, but decreased in the lower areas of $Z_3,\;Z_5,\;and\;Z_6$. These tendencies did not coincided with exchange cation concentrations $(Na^+,\;K^+,\;Mg^{++},\;Ca^{++})$. Both total carbon (T-C) and total nitrogen (T-N) accumulated more in the lower areas of planting sites than in the higher areas, and levels were higher closer to the surface than in the soil depths. It is supposed that these tendencies are related to the accumulation of fallen leaves or other organic matter at the soil surface, and the soil chemicals then slowly move downward from the surface. Impediments to tree growth included soil hardiness, high soil salinity and exchangeable cation concentration, low soil moisture content, acidic or alkaline soil, low organic matter, heterogeneity of soil texture and establishment of soil stratification.

국내 저관리 경량형 옥상녹화용 식생기반재의 이화학적 특성 및 탄소고정량 비교 분석 (A Comparative Study on Carbon Storage and Physicochemical Properties of Vegetation Soil for Extensive Green Rooftop Used in Korea)

  • 이상진;박관수;이동근;장성완;이항구;박환우
    • 한국환경복원기술학회지
    • /
    • 제18권1호
    • /
    • pp.115-125
    • /
    • 2015
  • This study was carried out to analyze comparison of carbon storage and physicochemical properties of vegetation soil for extensive green rooftop established at Seoul National University in september 2013. For this study, 42 plots were made by 2 kinds of vegetation soil including A-type and B-type. A-type vegetation soil plots were made of 90% perlite and 10% humus and B-type vegetation soil plots were made of 60% perlite, 20% vermiculite, 10% coco peat and 10% humus. This study used 6 kinds of plants which are Aster koraiensis, Sedum takesimense, Zoysia japonica Steud, Euonymus japonica, Rhododendron indicum SWEET and Ligustrum obtusifolium. Field research was carried out in 11 months after planting. Physiochemical properties of B-type vegetation soil plots were better than A-type vegetation soil plots in every way and soil carbon content was also higher at B-type vegetation soil plots as well. B-type vegetation soil plots were maintained 10 to 20% higher soil water content than A-type vegetation soil plots of the study period. The species of herb which showed the best carbon storage was Zoysia japonica Steud at B-type vegetation soil plots. The species of shrub which showed the best carbon storage was Ligustrum obtusifolium at B-type vegetation soil plots. Plants generally showed better growth at B-type vegetation soil plots and B-type vegetation soil plots were higher than A-type vegetation soil plots in soil carbon stock.

Soil Properties of Quercus variabilis Forest on Youngha Valley in Mt. Worak National Park

  • Choi, Hyeon-Jin;Jeon, In-Yeong;Shin, Chang-Hwan;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • 제29권5호
    • /
    • pp.439-443
    • /
    • 2006
  • Soil properties of Quercus variabilis forest on Youngha valley at Mt. Worak National Park were studied as a part of Korea National Long-Term Ecological Research. Soil sampling was carried out along the 50 cm soil depth with 10cm intervals at every quarter from May 2005 through July 2006. Fresh soil was used for $NH_4{^+}-N,\;NO_3{^-}-N$, and soil water content determination. Remaining soils were air dried in the shade, and then used for determination of soil pH, T-N, T-P and exchangeable cation. Average soil organic matter in top soil was $8.5{\pm}1.2%$ and decreased with soil depth. Bulk density of top soil was $0.82{\pm}0.07g/cm^3 $and increased with soil depth. Soil organic matter and bulk density showed a negative linear correlation ($R^2=0.8464$). Soil pH in top soil and subsoil was similar. T-N, $NH_4{^+}-N,\;NO_3{^-}-N$ and T-P in top soil were $1.9{\pm}0.5mg/g,\;7.3{\pm}1.0mg/kg,\;2.0{\pm}0.4mg/kg\;and\;0.2{\pm}0.05mg/g$, respectively. $K^+,\;Ca^{2+}\;and\;Mg^{2+}$ in top soil were $84.6{\pm}24.4,\;408.8{\pm}137.8\;and\;93.4{\pm}23.0mg/kg$, respectively. They decreased with soil depth. Amounts of organic matter, T-N, $NH_4{^+}-N,\;NO_3{^-}-N$, T-P, $K^+,\;Ca^{2+}\;and\;Mg^{2+}$ in 50 cm soil depth were 250.9, 3.45, 0.025, 0.003, 0.639, 0.181, 0.845 and 0.302 ton $ha^{-1}\;50cm-depth^{-1}$, respectively.

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.

토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향 (The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants)

  • 이소정;김민수
    • 한국조경학회지
    • /
    • 제25권2호
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF