태양의 활동영역에서 관측할 수 있는 흑점은 주로 흑점군으로 관측되며, 태양폭발현상의 발생을 예보하기 위한 중요한 관측 대상 중 하나이다. 현재 태양 폭발을 예보하는 모델들은 McIntosh 흑점군 분류법을 사용하며 통계적 모델과 기계학습 모델로 나누어진다. 컴퓨터는 흑점군의 형태학적 특성을 연속적인 값으로 계산하지만 흑점군의 형태적 다양성으로 인해 McIntosh 분류를 잘못 분류할 수도 있다. 이러한 이유로 컴퓨터가 계산한 흑점군의 형태학적인 특성을 예보에 직접 적용하는 것이 필요하다. 우리는 흑점군의 형태학적인 특성(개수, 면적, 면적비 등)과 함께 모든 흑점을 정점(Vertex)으로 하고 그 사이를 연결하는 간선(Edge)으로 하는 간선의 거리 합이 최소인 최소신장트리(Minimum spanning tree : MST)를 작성하였다. 이 최소신장트리를 사용하여 흑점군을 검출하고 가장 면적이 큰 정점을 중심으로 트리의 깊이(Depth)와 차수(Degree)를 계산하였다. 이 방법을 2003년 SOHO/MDI의 태양 가시광 영상에 적용하여 구한 흑점군의 내부 흑점수와 면적은 NOAA에서 산출한 값들과 90%, 99%의 좋은 상관관계를 가졌다. 우리는 이 연구를 통해 흑점군의 형태학적인 특성과 더불어 예보에 직접적으로 활용할 수 있는 방법을 논의하고자 한다.
A necessary condition for the formation of a filament is magnetic helicity. In the present paper we seek the origin of magnetic helicity of intermediate filaments. We observed the formation of a sinistral filament at the boundary of a decaying active region using full-disk $H_{\alpha}$ images obtained from Bi Bear Solar Observatory. We have measured the rate of helicity injection during the formation of the filament using full-disk 96 minute-cadence magnetograms taken by SOHO MDI. As a result we found that 1) no significant helicity was injected around the region (polarity inversion line; PIL) of filament formation and 2) negative helicity was injected in the decaying active region. The negative sign of the injected helicity was opposite to that of the filament helicity. On the other hand, at earlier times when the associated active region emerged and grew, positive helicity was intensively injected. Our results suggest that the magnetic helicity of the intermediate filament may have originated from the helicity accumulated during the period of the growth of its associated active region.
Kim, Hye- Rim;Moon, Y.J.;Jang, Min-Hwan;Kim, R.S.;Kim, Su-Jin;Choe, G.S.
Journal of The Korean Astronomical Society
/
v.41
no.6
/
pp.181-186
/
2008
Recently, Choe & Cheng (2002) have demonstrated that multiple magnetic flux systems with closed configurations can have more magnetic energy than the corresponding open magnetic fields. In relation to this issue, we have addressed two questions: (1) how much fraction of eruptive solar active regions shows multiple flux system features, and (2) what winding angle could be an eruption threshold. For this investigation, we have taken a sample of 105 front-side halo CMEs, which occurred from 1996 to 2001, and whose source regions were located near the disk center, for which magnetic polarities in SOHO/MDI magnetograms are clearly discernible. Examining their soft X-ray images taken by Yohkoh SXT in pre-eruption stages, we have classified these events into two groups: multiple flux system events and single flux system events. It is found that 74% (78/105) of the sample events show multiple flux system features. Comparing the field configuration of an active region with a numerical model, we have also found that the winding angle of the eruptive flux system is slightly above $1.5{\pi}$.
We report three types of evolutions of EUV bright points (EBPs) which are characterized by their height variations. We analyzed three EBPs during their lifetimes observed by STEREO/SECCHI/EUVI and we obtained heights, sizes, and intensities. Moreover, we investigated their underlying magnetic bipoles observed by SOHO/MDI and we measured distances and fluxes of the two opposite fragments. We found three distinct changes in the heights of the EBPs: upward, downward, and flat. In the upward case, the EBP showed a small and dark structure first, and then changed to a large and bright loop. In the downward case, the EBP first appeared as a large and dark loop structure, and then evolved to a compact and bright loop system. Finally, in the flat case, the height and the size of the EBP didn't change significantly. We found that those EBPs were associated with three distinct contact types of their underlying magnetic fragments, emerging, cancelling, and shearing, respectively. In all cases, both flux emergences and flux cancellations were observed during the lifetimes of the BPs. The flux emergence was dominant in the initial phase and the flux cancellation was significant when the intensity reached its maximum. In addition, we found a remarkable correlation between the heights of the EBPs and the distance of the opposite magnetic fragments.
A cancelling magnetic feature (CMF) is believed to be a result of magnetic reconnection in the low atmosphere of the Sun. In this work, we investigate the physical properties of CMFs, focusing on the rates of flux cancellation in CMFs and the dynamics of chromospheric phenomena coupled with CMFs. First, we have determined the specific rates of flux cancellation using the magnetograms taken by the Solar Optical Telescope (SOT) aboard the Hinode satellite. The specific rates determined with the SOT turned out to be systematically higher than those based on the data taken by the Michelson Doppler Imager (MDI) aborad the SOHO. Second, we analyzed transient Ca II brightenings associated with small-scale CMFs using the SOT/Hinode. We found that in most Ca II brightenings related to CMFs, and the Ca II intensity peaks after magnetic flux cancellation proceeds. Moreover, brightenings tend to appear as pairs of bright points of similar size and similar brightness overlying magnetic bipoles. To further study the brightening and dynamics of chromospherie features associated with CMFs, we have analyzed Fast Imaging Solar Spectrograph (FISS) data. From this data the Doppler motion of chromospheric features above a CMF changed from redshift to blueshift. The duration of such dynamics is very short being less than 2 minutes. These results are unexpected one and can not be explained by any pre-existing pictures of CMFs.
If all Coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. We select 34 CME-ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk centre. The helicity signs in the ARs are determined by estimation of accumulating amounts of helicity injections through the photospheric surfaces in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88%) are helicity sign-consistent events, while 4 events (12%) are sign-inconsistent. Through a detailed investigation of the AR solar origins of the 4 exceptional events, we find that those exceptional events can be explained by the local AR helicity sign opposite to that of the entire AR helicity (2000 July 28 ICME), incorrectly reported solar source in CDAW (2005 May 20 ICME), or the helicity sign of the pre-existing coronal magnetic field (2000 October 13 and 2003 November 20 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions where CMEs were erupted.
Park, Jongyeob;Moon, Yong-Jae;Choi, SeongHwan;Park, Young-Deuk
The Bulletin of The Korean Astronomical Society
/
v.38
no.2
/
pp.98-98
/
2013
태양의 활동영역에서 관측할 수 있는 흑점은 주로 흑점군으로 관측되며, 태양폭발현상의 발생을 예보하기 위한 중요한 관측 대상 중 하나이다. 현재 태양 폭발을 예보하는 모델들은 McIntosh 흑점군 분류법을 사용하며 통계적 모델과 기계학습 모델로 나누어진다. 컴퓨터는 흑점군의 형태학적 특성을 연속적인 값으로 계산하지만 흑점군의 형태적 다양성으로 인해 McIntosh 분류법과 일치하지 않는 경우가 있다. 이러한 이유로 컴퓨터가 계산한 흑점군의 형태학적인 특성을 예보에 직접 적용하는 것이 필요하다. 우리는 흑점군을 검출하기 위해 최소신장트리(Minimum spanning tree : MST)를 이용한 계층적 군집화 기법을 수행하였다. 그래프(Graph)이론에서 최소신장트리는 정점(Vertex)과 간선(Edge)으로 구성된 간선의 가중치의 합이 최소인 트리이다. 우리는 모든 흑점을 정점, 그들의 연결을 간선으로 적용하여 최소신장트리를 작성하였다. 또한 최소신장트리를 활용한 계층적 군집화기법은 초기값에 따른 군집화 결과의 차이가 없기 때문에 흑점군 검출에 있어서 가장 적합한 알고리즘이다. 이를 통해 흑점군의 기본적인 형태학적인 특성(개수, 면적, 면적비 등)을 계산하고 최소신장트리를 통해 가장 면적이 큰 흑점을 중심으로 트리의 깊이(Depth)와 차수(Degree)를 계산하였다. 이 방법을 2003년 SOHO/MDI의 태양 가시광 영상에 적용하여 구한 흑점군의 내부 흑점수와 면적은 NOAA에서 산출한 값들과 각각 90%, 99%의 좋은 상관관계를 가졌다. 우리는 이 연구를 통해 흑점군의 형태학적인 특성과 더불어 예보에 직접적으로 활용할 수 있는 방법을 논의하고자 한다.
As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.
Solar proton events, whose fluxes are larger than 10 particles cm-2 sec-1 ster-1 for >10 MeV protons, have been observed since 1976. NOAA proton event list from 1997 to 2006 shows that most of the events are related to both flares and CMEs but a few fraction of events (5/93) are only related with CMEs. In this study, we carefully identified the sources of these events. For this, we used LASCO CME catalog and SOHO MDI data. First, we examined the directions of CMEs related with the events and the CMEs are found to eject from the western hemisphere. Second, we searched a major active region in the front solar disk for several days before the proton events occurred by taking into account two facts: (1) The location of the active region is consistent with the position angle of a given CME and (2) there were several flares in the active region or the active region is the largest among several candidates. As a result, we were able to determine active regions which are likely to produce proton events without ambiguity as well as their longitudes at the time of proton events by considering solar rotation rate, $13.2^{\circ}$ per day. From this study, we found that the longitudes of five active regions are all between $90^{\circ}W$ and $120^{\circ}W$. When the flare peak time is assume to be the CME event time, we confirmed that the dependence of their rise times (proton peak time - flare peak time) on longitude are consistent with the previous empirical formula. These results imply that five events should be also associated with flares which were not observed because they occurred from back-side.
We have examined the occurrence probability of solar proton events (SPEs) and their peak fluxes depending three flare parameters (X-ray peak flux, longitude, and impulsive time). For this we used NOAA SPEs from 1976 to 2006, and their associated X-ray flare data. As a result, we selected 166 proton events that were associated with major flares; 85 events associated with X-class flares and 81 events associated with M-class flares. Especially the occurrence probability strongly depends on these three parameters. In addition, the relationship between X-ray flare peak flux and proton peak flux as well as its correlation coefficient are strongly dependent on longitude and impulsive time. Among NOAA SPEs from 1997 to 2006, most of the events are related to both flares and CMEs but a few fraction of events (5/93) are only related with CMEs. We carefully identified the sources of these events using LASCO CME catalog and SOHO MDI data. Specifically, we examined the directions of CMEs related with the events and the history of active regions. As a result, we were able to determine active regions which are likely to produce SPEs without ambiguity as well as their longitudes at the time of SPEs by considering solar rotation rate. From this study, we found that the longitudes of five active regions are all between $90^{\circ}W$ and $120^{\circ}W$. When the flare peak time is assume to be the CME event time, we confirmed that the dependence of their rise times (proton peak time - flare peak time) on longitude are consistent with the previous empirical formula. These results imply that five events should be also associated with flares which were not observed because they occurred from back-side. Now we are examining the occurrence probability of SPEs depending on CME parameters. Finally, we will discuss the future prospects on the development of an empirical SPE forecast model based on the information of flares and CMEs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.