• Title/Summary/Keyword: SOFC electrolyte

Search Result 171, Processing Time 0.024 seconds

Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 계면안정성을 위한 완층층의 도입)

  • Kim, Kwang-Nyeon;Moon, Jooho;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.637-644
    • /
    • 2005
  • In order to find a proper buffering material which can prohibit an unwanted interfacial reaction between anode and electrolyte of LSGM-based SOFC, we examined a gadolinium doped ceria and scandium doped zirconia as a candidate. For this examination, we investigated the microstructural and phase stability of the interface under different buffering layer conditions. According to the investigation, ceria based material induced a serious La diffusion out of the LSGM electrolyte resulted in the formation of very resistive $LaSrGa_3O_7$ phase at the interface. On the other hand zirconia based material was directly reacted with LSGM electrolyte and thus produced very resistive reaction products such as $La_2Zr_2O_7,\;Sr_2ZrO_4,\;LaSrGaO_4\;and\;LaSrGa_3O_7$. From this study we found that an improper buffering material induced the higher internal cell resistance rather than an interfacial stability.

Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD (EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성)

  • Shin, Tae-Ho;Yu, Ji-Haeng;Lee, Shiwoo;Han, In-Sub;Woo, Sang-Kuk;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.117-122
    • /
    • 2005
  • Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.

Fabrication and Characterization of BixCel-xO2-x/2 Electrolytes for IT-SOFC (중온형 고체산화물 연료전지BixCel-xO2-x/2 전해질의 제조 및 특성평가)

  • Han, Ju-Hyeng;Lee, In-Sung;Lee, Dokyol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.808-815
    • /
    • 2005
  • [ $Bi_xCe_{l-x}O_{2-x/2}$ ](BD C : Bismuth Doped Ceria) powders with x = 0.1, 0.2, and 0.3 were synthesized using the Glycine Nitrate Process (GNP). They were then calcined at $500^{\circ}C$ for 2 hand sintered in a pellet or rod form at 900, 1000 or $1100^{\circ}C$ for 4 h for characterization as the alternative electrolyte material for intermediate temperature solid oxide fuel cells. The BDC powder consisted of a single phase of $CeO_2-Bi_2O_3$ solid solution in the as-synthesized state as well as in the as-calcined state with a mean powder size of 4.5nm in the former state and 6.5 - 10.1nm in the latter. On the contrary, the second phase of $\alpha-Bi_2O_3$ was observed to have been formed in the sinter with its amount increasing roughly with increasing temperature or $Bi_2O_3$ content. The BOC powder was superior in sinterability to other alternative electrolyte materials such as GDC, ScSZ, and LSGM with the minimum sintering temperature for a relative density of $95\%$ or larger as low as $1100^{\circ}C$. The ionic conductivity of BOC increased with $Bi_2O_3$ content and the maximum value of 0.119 S/cm was obtained at $800^{\circ}C$ for $Bi_{0.3}Ce_{0.7}O_{1.85}$.

Effects of Partial Substitution of CeO2 with M2O3 (M = Yb, Gd, Sm) on Electrical Degradation of Sc2O3 and CeO2 Co-doped ZrO2

  • Shin, Hyeong Cheol;Yu, Ji Haeng;Lim, Kyoung Tae;Lee, Hee Lak;Baik, Kyeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.500-505
    • /
    • 2016
  • Scandia-stabilized zirconia co-doped with $CeO_2$ is a promising electrolyte for intermediate temperature SOFC, but still shows rapid degradation during a long-term operation. In this study, $CeO_2$ (1 mol%) as a stabilizer is partially substituted with lanthanum oxides ($M_2O_3$, M=Yb, Gd, Sm) to stabilize a cubic phase and thus durability in reducing atmosphere. 0.5M0.5Ce10ScSZ electrolytes were prepared by solid state reaction and sintered at $1450^{\circ}C$ for 10 h to produce dense ceramic specimens. With addition of the lanthanum oxide, 0.5M0.5Ce10ScSZ showed lower degradation rates than 1Ce10ScSZ. Since $Gd_2O_3$ showed the highest ionic conductivity among the co-dopants, an electrolyte-supported cell with 0.5Gd0.5Ce10ScSZ was prepared to compare its long-term performance with that of 1Ce10ScSZ-based cell. Maximum power density of 0.5Gd0.5Ce10ScSZ-based cell was degraded by about 2.3% after 250 h, which was much lower than 1Ce10ScSZ-based cell (4.2%).

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.

Porosity Control in LSM Electrode Formation in Layered Plannar SOFC Module (적층 평판형 SOFC에서 LSM 전극의 기공 제어)

  • Lee, Won-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dea-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.866-870
    • /
    • 2014
  • In solid oxide fuel cell system, yttria-stabilized zirconia is generally adopted as the electrolyte, which has high strength and superior oxygen ion conductivity, and the air electrode and the fuel electrode are attached to this. Recently, new structure of 'layered planar SOFC module' was suggested to solve the reliability problem due to the high temperature stability of a sealing agent and a binding material. In this study to materialize the air electrode in a layered planar SOFC module, the LSM ink was coated to form homogeneous electrode in the channel after the ink preparation. As the porosity control agent, PMMA or active carbon powder was adopted with use of a commercial dispersant in ethanol. The optimal amounts of both the porosity control agents and the dispersant were determined. Four (4) vol% of the dispersant for the LSM-PMMA case and 15 vol% for LSM-carbon powder showed the lowest viscosities respectively to indicate the best dispersed states of the slurries. With PMMA and carbon powder, sintered LSM ink shows the relatively homogeneous distributions of pores and with increases of the agents, the porosities increased in both cases. From this, it can be thought that the amount of the PMMA or carbon powder could be used to control the porosity of the LSM ink.

Variation of Oxygen Nonstoichiometry of Porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$ SOFC-Cathode under Polarization

  • Mizusaki, Junichiro;Harita, Hideki;Mori, Naoya;Dokiya, Masayuki;Tagawa, Hiroaki
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.177-182
    • /
    • 2000
  • At the porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$(LCM)/YSZ electrodes of solid oxide fuel cells (SOFC), the electrochemical redox reaction of oxygen proceeds via the triple boundary (TPB) of gas/LCM/YSZ. The surface diffusion of adsorbed oxygen on LCM has been proposed as the rate determining process, assuming the gradient of oxygen chemical potential from the outer surface of porous layer to TPB. Along with the formation of this gradient, oxygen nonstoichiometry in the bulk of LCM may varies. In this paper, an electrochemical technique was described precisely to determine the variation of oxygen content in LCM of porous LCM/YSZ under polarization. It was shown that the oxygen potential in LCM layer under large cathodic polarization is much lower than that in the gas phase, being determined from the electrode potential and Nernst equation.

  • PDF

Performance of Single Cells with Anode Functional Layer for SOFC

  • Choi, Jin-Hyeok;Lee, Tae-Hee;Park, Tae-Sung;Yoo, Young-Sung
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • To improve the performance of the anode-supported Solid Oxide Fuel Cell (SOFC) which can be operated at an intermediate temperature, the functional layer (FL) is introduced on a anode substrate. And the scandia-stabilized zirconia (ScSZ) and samaria-doped ceria (SDC) which have higher ionic conductivity and better chemical stability than yttria-stabilized zirconia (YSZ) are used as material for the anode FL with the Ni, The fabrication process of anode-supported single cell with the anode FL was established and the power density of those was evaluated. As a result, the sample with anode FL (Ni-YSZ) has higher power density than normal cell. The single cell which was composed of the FL (Ni-YSZ) and electrolyte (YSZ) showed about $550mW/cm^2$ of the maximum power density at $650^{\circ}C$ and $1430mW/cm^2$ at $750^{\circ}C$ respectively, In case of the single cell using the ScSZ and SDC as anode FL, the performance of samples decreased rapidly and those showed unstable voltage during long-term test. In case of using methane as a fuel, the cell performance with each FL decreased comparing with $H_2$ fuel. In the region of a high current density, there are large concentration polarizations.

  • PDF

Study of Pr0.3Sr0.7CoxMn(1-x)O3 as the Cathode Materials for Intermediate Temperature SOFC (중.저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 Pr0.3Sr0.7CoxMn(1-x)O3 (x=0, 0.3, 0.5, 0.7, 1)에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.214-218
    • /
    • 2007
  • The decrease of polarization resistance in cathode is the key point for operating at intermediate temperature SOFC (solid oxide fuel cell). In this study, the influence of Co substitution in B-site at complex perovskite on the electronic conductivity of PSCM ($Pr_{0.3}Sr_{0.7}Co_xMn_{(1-x)}$) was investigated. The PSCM series exhibits excellent MIEC (mixed ionic electronic conductor) properties. The ASR (area specific resistance) of PSCM3773 was $0.174{\Omega}{\cdot}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The TEC(thermal expansion coefficient) was decreased by addition of Mn. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials. The delamination was caused by the difference of TEC.

Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • The characteristic features of solid oxide fuel cells are reviewed from the viewpoint of the thermodynamic variables to be developed inside cells/stacks particularly in terms of gradients of chemical potential, electrical potential and temperature and corresponding flows of air, fuel, electricity and heat. Examples of abrupt destruction of SOFC systems were collected from failures in controlling their steady flows, while continuous degradation was caused by materials behaviors under gradients of chemical potentials during a long operation. The local equilibrium approximation has been adopted in NEDO project on the durability/reliability of SOFC stacks/systems; this makes it possible to examine the thermodynamic stability/reactivity as well as mass transfer under the thermodynamic variable gradients. Major results of the NEDO project are described with a focus on degradation/deterioration of electrolyte and electrode materials.