• 제목/요약/키워드: SOFC anode

검색결과 224건 처리시간 0.033초

고체산화물 연료전지 스택 열화 방지를 위한 전해질 기술 (Bi-layer Electrolyte for Preventing Solid Oxide Fuel Cell Stack Degradation)

  • 박미영;배홍열;임형태
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.289-294
    • /
    • 2014
  • The stability of a solid oxide fuel cell (SOFC) stack is strongly dependent on the magnitude and profile of the internal chemical potential of the solid electrolyte. If the internal partial pressure is too high, the electrolyte can be delaminated from the electrodes. The formation of high internal pressure is attributed to a negative cell voltage, and this phenomenon can occur in a bad cell (with higher resistance) in a stack. This fact implies that the internal chemical potential plays an important role in determining the lifetime of a stack. In the present work, we fabricate planar type anode-supported cells ($25cm^2$) with a bi-layer electrolyte (with locally increased electronic conduction at the anode side) to prevent high internal pressure, and we test the fabricated cells under a negative voltage condition. The results indicate that the addition of electronic conduction in the electrolyte can effectively depress internal pressure and improve the cell stability.

고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가 (Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell)

  • 신유철;김영미;오익현;김호성;이무성;현상훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

고체산화물 연료전지 단위셀의 열응력에 관한 연구 (Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell)

  • 김영진;박상균;노길태;김만응
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.414-420
    • /
    • 2011
  • 평균전류밀도 0~2000 $A/m^2$ 의 운전범위에 대한 음극 지지형 고체산화물 연료전지의 단위셀에 대한 열응력해석을 수행하였다. 평균전류밀도가 2000 $A/m^2$ 운전에서, 단위전지 열유동에 대한 수치해석적 방법으로 얻어진 온도분포를 토대로 구조해석을 수행하였다. 온도 편차가 매우 미미한 상태 에서 이러한 유체-구조 연성 해석 방법을 통하여 완전 결합된 조건에서 최대등가응력이 전해질은 262.58MPa, 캐소드는 28.55MPa, 애노드는 15.1MPa로 계산되어 전해질에서 가장 높은 응력이 발생함 을 알 수 있었다. 또한, 마찰접합조건인 경우 마찰계수가 증가함에 따라 응력이 증가함을 알 수 있었으며, 이는 셀 내부 물질간의 결합력에 의한 응력이 지배적임을 알 수 있었다.

BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성 (Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode)

  • 정재원;유충열;주종훈;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성 (Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode)

  • 이민진;최병현;지미정;안용태;홍선기;강영진;황해진
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.

SOFC 음극 제조를 위한 NiO가 코팅된 YSZ 분말의 합성 (Preparation of NiO Coated YSZ Powder for Fabrication of an SOFC Anode)

  • 임광영;한인동;심수만;박준영;이해원;김주선
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.781-787
    • /
    • 2006
  • NiO-coated YSZ powder was prepared using heterogeneous precipitation of Ni hydroxides on YSZ particle surface and high energy milling. The powders were characterized by TG/DTA, XRD, XPS, and SEM. Amorphous Ni precipitate completely decomposed into NiO at $500^{\circ}C$ and the growth of NiO crystallites was constrained by the core particles. Nanocrystalline NiO-coated YSZ core-shell structure powder could be obtained after calcination at $800^{\circ}C$ for 2 h. A core-shell powder compact, due to high sinterability, showed a near theoretical density at $1350^{\circ}C$. After reduction at $900^{\circ}C$, interpenetrating Ni-YSZ microstructure with very uniformly distributed fine Ni and YSZ grains and pores was observed. In contrast, the mechanically mixed oxide sample showed less uniform distribution of pores and larger discontinuous We particles as compared with the core-shell samples.

고체산화물 연료전지의 전극과 스택운영의 기능적 분석 (Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell)

  • 배중면;김기현;지현진;김정현;강인용;임성광;유영성
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

고체산화물 연료전지의 Anode인 Ni/YSZ에 Ni 원자층 증착 코팅의 효과 (Effect of Metal Ni Atomic Layer Deposition Coating on Ni/YSZ, Anode of Solid Oxide Fuel Cells (SOFCs))

  • 김준호;모수인;박광선;김형순;김도형;윤정우
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.61-66
    • /
    • 2022
  • 이 연구는 원자층 증착(Atomic Layer Deposition, ALD) 기술을 사용하여 나노미터 크기의 금속 촉매 물질을 연료극 층에 코팅하여 표면적을 늘리고 촉매의 효과를 극대화시키기 위한 연구이다. ALD 공정은 기판 위에 원자 수준에서 잘 제어된 두께를 갖는 균일한 막을 제조하는 것으로 알려져 있다. 우리는 고체산화물 연료전지의 연료극 물질로 가장 널리 알려진 Ni/YSZ 위에 금속(Ni)을 코팅하여 성능을 측정하였다. ALD 코팅은 3 nm 이상의 코팅에서 전지 성능의 감소를 보이기 시작했다

Mechanism for Ni/YSZ Nano-composite Anode from Spherical Core-shell Formation

  • 안용태;최병현;지미정;구자빈;황해진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We studied a method of manufacturing an anode to restrict contraction in reducing NiO/YSZ by uniformly mixing. In order to mix Ni and YSZ, a sub-micron Ni core surface was coated at high-speed by a mixture of nano-sized YSZ and a spherical core-shell was subsequently formed. The micron-sized core-shell anode powder was then heat treated at $400{\sim}1,450^{\circ}C$ in an air atmosphere and Ni was extruded and synthesized in nano-size. Subsequently, when the nano-sized mixture of the anode was heat treated and maintained at a temperature of $1,450^{\circ}C$, the anode was manufactured, where Ni and YSZ were uniformly distributed with the nano-structure. According to the nano-sized anode powder synthesis process, Ni particles were oxidized at $400{\sim}500^{\circ}C$ and became spherical by surface tension. In the case of the spherical core Ni powder, the heat treatment temperature rose to $1,250^{\circ}C$ and then a gap between the internal and external pressures occurred due to thermal and tensile stresses. A crack subsequently appeared on the surface, and the heat treatment temperature was increased continuously to increase the pressure gap and then the core Ni extruded as a nano-sized powder, Ni and YSZ uniformly distributed. It was found that the anode of 50~200 nm with a consistent structure obtained in this study has electric conductivity that is approximately 3 times larger than that of a commercial anode.

  • PDF

연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능 (Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle)

  • 임탁형;김관영;박재량;이승복;신동열;송락현
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.283-287
    • /
    • 2007
  • 한국에너지기술연구원에서는 중온 ($700{\sim}800^{\circ}C$) 작동용 연료극 지지체 평관형 SOFC 스택을 구성하는 단위 번들을 개발했다. 연료극 지지체 평관형 셀은 Ni/YSZ 서밋 연료극 지지체 튜브, 8몰% $Y_2O_3$ stabilized $ZrO_2$ (YSZ) 전해질, $LaSrMnO_3$ (LSM)과 LSM-YSZ composite 및 $LaSrCoFeO_3(LSCF)$로 구성된 다중층 공기극으로 구성됐다. 제조된 연료극지지체 평관형 셀은 유도 브레이징 법에 의해 페리틱 (ferritic) 금속 캡에 접합됐고, 공기극의 전류집전을 위해 공기극 외부에 Ag 선 및 $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste를 이용했으며, 연료극의 전류집전은 Ni felt, wire, 그리고 paste를 이용했다. 단위 번들을 만들기 위한 연료극 지지체 평관형 셀의 반응 면적은 셀 당 $90\;cm^2$ 이었으며, 2개의 셀이 병렬로 연결되어 1개의 단위 번들이 됐고, 총 12개의 단위 번들이 직렬로 연결되어 스택을 구성한다. 공기 및 3%의 가습된 수소를 산화제 및 연료로 사용한 단위 번들의 운전 결과 최대 성능은 $800^{\circ}C$에서 $0.39\;W/cm^2$의 출력이 나타났다. 본 연구를 통해 연료극 지지체 평관형 SOFC 셀의 기본 기술과 KIER 만의 독특한 연료극 지지체 평관형 SOFC 스택을 구성하는 단위 번들의 개념을 확립할 수 있었다.