• Title/Summary/Keyword: SOD

Search Result 3,003, Processing Time 0.034 seconds

Screening of Korean Medicinal and Food Plants with Antioxidant Activity (한국 약용 및 식용식물들의 항산화성 식물탐색)

  • Chung, Il-Min;Kim, Kwang-Ho;Ahn, Joung-Kuk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.4
    • /
    • pp.311-322
    • /
    • 1998
  • Sixty medicinal and food plants native to Korea were mainly selected with old traditional habit and antioxidant activity was investigated. The 80% EtOH extracts of sixty medicinal and food plants were screened for antioxidant activity. Antioxidant activity was measured by the TBA (Thiobarbituric acid), DPPH (1, 1-Diphenyl-2-picrylhydrazyl), SOD (superoxide dismutase) which was evaluated by the nitro blue tetrazolium(NBT) reduction method. Among sixty plants, black Glycine max(87. 3%) and Solanum nigrum (80.6%) exhibited the highest antioxidant activity by TBA and DPPH methods, respectively. Also, 10 species extracts including black Glycine max showed the high activity value in these two methods. The SOD characteristics on black Glycine max seed extracts which showed the highest SOD activity (53.5%) exhibited four major SODs; two Cu/ZnSODs and two FeSODs. However, Adenophaora vertidllata which showed lowest SOD value (10.4%) had only Cu/Zn SOD. No varietal differences in the high SOD value were detected in the Cu/Zn SOD isozyme patterns.

  • PDF

Induction of Iron Superoxide Dismutase by Paraquat and Iron in Vitreoscilla $C_1$ (Vitreoscilla $C_1$에서 paraquat와 Iron에 의한 Iron Superoxide Dismutase의 유도)

  • 박기인
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.517-521
    • /
    • 2003
  • Superoxide dismutase which is metalloenzyme that decomposes superoxide radicals into hydrogen peroxide and molecular oxygen. Vitreoscilla has FeSOD. Expression of FeSOD to paraquat was largely constitutive. This suggests that the basal level of FeSOD is sufficient to provide protection against superoxide generated during normal aerobic metabolism. Induction of SOD by iron supports that insertion of the active site metal into the corresponding apoprotein. The effect of paraquat on induction by iron seemed that iron brought the synergism effect in SOD activity with paraquat. It suggests that the relief of growth inhibition is due to protection against the lethality of O$_2$afforded by the elevated SOD. There may be control of FeSOD activity posttranslationally. Posttranslation control of enzyme function is particularly feasible for a metalloenzyme, for which conversion of apo- to holoenzyme may be the rate-limiting or regulatory step.

Characterization of Enzymes Against Oxygen Derivatives Produced by Rhodobacter sphaeroides D-230 (Rhodobacter sphaeroides D230이 생성하는 산소 유도체에 작용하는 효소의 특성)

  • 김동식;이혜주
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • The activities of enzymes that act on oxygen derivatives in Rhodobacter sphaeroides D-230 were investigated under various culture conditions. Intracellular SOD activity from the cells grown in aerobic or anaerobic culture conditions was highest at pH 7.0 and pH 8.0, respectively. On the other hand, extracellular SOD activity was highest at pH 6.0. Catalase activity was highest at neutral pH in both cases. Growth of R. sphaeroides D-230 in aerobic or anaerobic culture conditions was inhibited by methyl viologen. As R. sphaeroides D-230 was cul-tured aerobically, SOD activity was increased about 2-fold by addition of iron ion. But $Mn^+2$ had little effect on the SOD activity of R. sphaeroides D-230 grown in aerobically. NaCN, the inhibitor of Cu$.$Zn-SOD, did not inhibit SOD activity. But, $NaN_3$, the inhibitor of Mn-SOD, inhibited SOD activity in anaerobic cultures con-dition. Therefore, R. sphaeroides D-230 produce Mn-SOD in anaerobic condition, although Fe-Sod is produced in aerobic condition. The activity of catalase was induced by methyl viologen, however, extremely inhibited by NaCN and $NaN_3$.

Induction of antioxygenic enzymes as defense systems in plant cells against low temperature stress : (II) $Mn^{+2}-induced$ SOD activation and enhancement of cold tolerance in rice seedlings (식물의 냉해에 대한 생체방어기구로서 항산소성 효소의 유도 : (II) $Mn^{+2}$이온에 의한 세포내 SOD의 활성화와 벼 유묘의 내냉성 향상)

  • Hahn, Chang-Kyun;Kim, Jong-Pyung;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.168-173
    • /
    • 1991
  • The uptake of $Mn^{+2}$, a metal cofactor Mn-SOD, by rice seedings resulted in not only a substantial increase in SOD activity in leaf tissues of the plants, but also a significant enhancement of their cold tolerance : the relative extent of the cold tolerance appeared to accord with relative level of the SOD activity. In contrast, $Fe^{+3},\;Cu^{+2}$ and $Zn^{+2}$, which are the cofactors of Fe-SOD and Cu/Zn-SOD, were found to be ineffective for increasing the SOD activity as well as for improving the chilling-resistant capacity of the plants. The results suggest that Mn-SOD, which is most likely induced by its substrate(superoxide) and activated by the presence of $Mn^{+2}$a at high level, is the enzyme acting as an active component of the defense system against low temperature stress in rice plants. In addition, the application of abscisic acid which has been know to protect to some extent certain plants from chilling injury brought about an increase in SOD activity in rice tissues, providing another affirmative information for the crucial role of SOD under the circumstance of cold stress in plants.

  • PDF

Effect of Bottom Sediments on Oxygen Demand of Overlying Water in Onshore of Lake (팔당호 수변부 퇴적물이 수층의 산소소모에 미치는 영향)

  • Kang, Yang-Mi;Song, Hong-Gyu
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.23-30
    • /
    • 2000
  • n situ sediment oxygen demand (SOD), which takes place with the uptake of dissolved oxygen for biological metabolism and chemical oxidation in sediments, ranged from 1.57 to $12.55\;mg\;O_2\;m^{-2}\;h^{-1}$ in onshore of Lake Paldang from April to November 1999. SOD was influenced by the amount of organics and oxygen diffusion. Comparing the oxygen demands partitioning between overlying water and sediment during initial phase, SOD accounted for $63.8{\sim}94%$ of total oxygen demand in Lake Paldang. The chemical SOD and nitrogenous oxygen demand ranged $1.2{\sim}18.3%$ and $8.3{\sim}51.7%$ of total SOD, respectively. This result indicated that SOD in Lake Paldang occurred mainly by aerobic respiration and nitrification. Although the flow velocity could increase SOD within a certain limit, the effect of sediment depth on SOD was dependent on physicochemical properties of the sediment. This study showed that SOD can represent a significant portion of the total oxygen up-take in Lake Paldang. Therefore, the assessment of SOD might be necessary for the control of water quality.

  • PDF

Comparison of Carbonaceous Sediment Oxygen Demand in Lake Paldang and Lake Chungju (팔당호와 충주호 퇴적물의 탄소성 산소요구량 비교)

  • Shin, Yu-Na;Park, Hae-Kyung;Lee, Sang-Won;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.439-448
    • /
    • 2007
  • The purpose of this study was to investigate the seasonal variations of sediment oxygen demand (SOD) in Lake Paldang and Lake Chungju of the Han River system and to suggest SOD values as parameters for the water quality prediction models of two lakes. SOD was measured at laboratory using sediment collected at 2 sites in Lake Paldang from June to November and at 4 sites in Lake Chungju from May to November in 2005, respectively. It was found from the laboratory test that the SOD in Lake Paldang ranged from 337.8 to 881.0 mg $O_2m^{-2}d^{-1}$ and in Lake Chungju ranged from 143.0 to 969.1 mg $O_2m^{-2}d^{-1}$. The SOD of Lake Paldang showed similar variations to the content of organic matter of sediment. The SOD of Lake Chungju was positively correlated with temperature (r=0.78, p<0.01), $PO_4-P(r=0.79,\;p<0.01)$, TP (r=0.55, p<0.05), DTP (r=0.55, p<0.05), $NO_3-N$ (r=(0.72, p<0.01) of hypolimnetic water. These results indicate that the SOD of Lake Paldang was affected by the content and origin of organic matter of sediment and the SOD of Lake Chungju was closely correlated with physical and chemical factors.

Test of Superoxide Dismutase Characteristics and Antioxidant Activity in Perilla Leaves (들깨잎에 함유된 Superoxide Dismutase의 특성 및 항산화 활성 검정)

  • Chung, Ill-Min;Yun, Song-Joong;Kim, Jung-Tae;Gwag, Jae-Gyun;Sung, Jae-Duck;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.4
    • /
    • pp.504-511
    • /
    • 1995
  • This study was conducted to investigate the superoxide dismutase (SOD) characteristics and antioxidant activity by nonenzymatic(Fe$^{2+}$/Ascorbate) and Fe$^{3+}$-ADP/NADPH method in perilla(Perilla frutescens var. japonica Hara.) and jaso(Perilla frutescens Briton var. acuta Kudo.) leaves. The characteristics were evaluated by the nitro blue tetrazolium reduction method. Perilla leaves contained three or four major SODs depending on the varieties. The inhibitor test indicated that the Perilla leaves contained two Cu /ZnSODs and one or two FeSODs, but Jaso leaves have only Cu/ZnSOD. However, no varietal differences were detected in the Cu /ZnSOD isozyme patterns. FeSODs, however, showed different varietal isozyme patterns through the different combinations of the two FeSOD isozymes. Among MeOH extractes, "mil yang 2" showed very strong antioxidant activity. Relatively large differences in the levels of SOD and antioxidant activity detected in the Perilla varietites. There was significantly different in the comparison between perilla leaves and red jaso leaves.s.etween perilla leaves and red jaso leaves.

  • PDF

Production of Superoxide Dismutase by Deinococcus radiophilus

  • Yun, Young-Sun;Lee, Young-Nam
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.282-287
    • /
    • 2003
  • The production of superoxide dismutase (SOD) varied in Deinococcus radiophilus, the UV resistant bacterium, depending upon different phases of growth, UV irradiation, and superoxide treatment. A gradual increase in total SOD activity occurred up to the stationary phases. The electrophoretic resolution of the SOD in cell extracts of D. radiophilus at each growth phase revealed the occurrence of MnSOD throughout the growth phases. The SOD profiles of D. radiophilus at the exponential phase received oxidative stress by the potassium superoxide treatment or UV irradiation also revealed the occurrence of a single SOD. However, these treatments caused an increase in SOD activity. The data strongly suggest that D. radiophilus has only one species of SOD as a constitutive enzyme, which seems to be a membrane-associated protein.

Comparison of Cu(II)-DIPS and Human Recombinant Superoxide Dismutase, an Antioxidant (항산화제인 Cu(II)-DIPS와 재조합 인간 수퍼옥사이드 디스뮤타제의 비교)

  • Yong, Chul-Soon;Nam, Doo-Hyun;Huh, Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • The superoxide dismutase (SOD) mimetic activity of copper complex of 3,5-disopropylsalicylic acid (Cu(II)-DIPS) was tested and compared to those of human recombinant SOD (hrSOD) and its conjugate form with polyethyleneglycol (PEG) using fer- ricytochrome c reduction assay. Stability constant of Cu(II)-DIPS was measured po- tentiometrically using SCOGS2 program. In the presence of 10 g/L albumin, Cu(II)-DIPS lost most of its SOD mimetic activity. HrSOD was modified with polyethylene glycol (PEG) of M.W. 5000. These conjugates have markedly prolonged plasma half-lives of enzymatic activity (15.5 hr) compared to native hrSOD (5 min). In summary, efficient SOD mimetics should be stable enough not to dissociate in blood by serum protein. HrSOD could have longer half-life by conjugation with inert PEG for sustained SOD effect.

  • PDF

Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli

  • Na, Ju-Mee;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2405-2409
    • /
    • 2011
  • The psychrophilic bacteria Psychromonas arctica survives at subzero temperatures by having adapted several protective mechanisms against freezing and oxidative stresses. Many reactive oxygen species are likely generated in P. arctica as a result of reduced metabolic turnover rates. A previous study identified the pasod gene for superoxide dismutase from P. arctica using a series of PCR amplifications. Here, upon cloning into a His-tag fused plasmid, the sod gene from P. arctica (pasod) was successfully expressed by IPTG induction. His-tagged PaSOD was subsequently purified by $Ni^{2+}$-NTA affinity chromatography. The purified PaSOD exhibited a higher SOD activity than that of Escherichia coli (EcSOD) at all temperatures. The difference in activity between PaSOD and EcSOD becomes even more significant at 4$^{\circ}C$, indicating that PaSOD plays a functional role in the cold adaptation of P. arctica in the Arctic.