• Title/Summary/Keyword: SOC (state of charge)

Search Result 226, Processing Time 0.022 seconds

Measurements and Numerical Analysis of Electric Cart and Fuel Cell to Estimate Operating Characteristic of FCEV (연료전지 자동차의 주행성능 예측을 위한 전기자동차 및 연료전지의 성능실험과 수학적 모델링)

  • Cho, Yong-Seok;Kim, Duk-Sang;An, Seok-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.65-72
    • /
    • 2006
  • In new generation vehicle technologies, a fuel cell vehicle becomes more important, by virtue of their emission merits. In addition, a fuel cell is considered as a major source to generate the electricity for vehicles in near future. This paper focuses on modeling of not only an electric vehicle and but also a fuel cell vehicle to estimate performances. And an EV cart is manufactured to verify the modeling. Speed, voltage, and current of the vehicle and modeling are compared to estimate them at acceleration test and driving mode test. The estimations are also compared with the data of the Ballard Nexa fuel cell stack. In order to investigate a fuel cell based vehicle, motor and fuel cell models are integrated in a electric vehicle model. The characteristics of individual components are also integrated. Calculated fuel cell equations show good agreements with test results. In the fuel cell vehicle simulation, maximum speed and hydrogen fuel consumption are estimated. Even though there is no experimental data from vehicle tests, the vehicle simulation showed physically-acceptable vehicle characteristics.

Development of Fuzzy controller for battery cell balancing of agricultural drones (농업용 드론의 배터리 셀 밸런싱을 위한 퍼지제어기 개발)

  • Lee, Sang-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.199-208
    • /
    • 2017
  • Lithium polymer batteries are used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle, and now they are used in agricultural drones. However, when overcharging and overdischarging, the lithium-polymer battery is destroyed in the gap structure in the lithium-ion battery and the battery life is reduced. In order to prevent overcharge and overdischarge, uneven cell voltage Cell balancing system is needed. In this paper, a fuzzy controller suitable for nonlinear systems is proposed by detecting the unbalanced cells by detecting the voltage difference between charging and discharging of each cell, and suggesting the applied cell balancing algorithm. In this paper, we have designed the cell balancing of the battery pack of agricultural drones by fuzzy control and it is designed for equal control between cells. As a final result, we checked whether cell balancing is good, and when there are two cells, Cell balancing was confirmed. We tested whether it could be used for other products. As a result, we confirmed that cell balancing is good regardless of the number of cells used.

Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods (펄스 측정법에 기반한 리튬이차전지 출력 측정에 관한 전산 모사)

  • Park, Joonam;Byun, Seoungwoo;Appiah, Williams Agyei;Han, Sekyung;Choi, Jin Hyeok;Ryou, Myung-Hyun;Lee, Yong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • Energy storage systems (ESSs) have been utilized widely in the world to optimize the power operation system and to improve the power quality. As lithium secondary batteries are the main power supplier for ESSs, it is very important to predict its cycle and power degradation behavior. In particular, the power, one of the hardest electrochemical properties to measure, needs lots of resources such as time and facilities. Due to these difficulties, computer modelling of lithium secondary batteries is applied to predict the DC-IR and power value during charging and discharging as a function of state of charge (SOC) by using pulse-based measurement methods. Moreover, based on the hybrid pulse power characteristics (HPPC) and J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards) methods, their electrochemical properties are also compared and discussed.

The study for fuel economy characteristics of hybrid electric vehicle (HEV) according to the driving condition (다양한 운전조건에 따른 하이브리드 자동차의 연비 특성 연구)

  • Lee, Minho;Kim, Sungwoo;Kim, Jeonghwan;Kim, Kiho;Jung, Choongsub;Rho, Kyungwan;Jang, Kwangsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.104-104
    • /
    • 2011
  • The fuel economy estimates essentially serve two purposes : to provide consumers with a basis on which to compare the fuel economy of different vehicles, and to provide consumers with a reasonable estimate of the range of fuel economy they can expect to achieve. The current fuel economy label values utilize measured fuel economy over city driving cycles. However, this test driving mode can not be evaluated the variety factor of the real-world. These factors include differences between the way vehicles are driven on the road and over the test cycles, air conditioning use, widely varying ambient temperature and humidity, widely varying trip lengths, wind, precipitation, rough road conditions, hills, etc. The purpose of this paper is to account for three of these factors on the fuel economy : 1) on-road driving patterns (i.e. higher speeds and more aggressive driving (higher acceleration rates)), 2) air conditioning, and 3) colder temperatures. The new test methods will bring into the fuel economy estimates the test results from the five emissions tests in place today : CVS-75, HWFET, US06, SC03 and Cold CVS-75. Based on these new test methods, this paper discusses the characteristics of driving condition on Hybrid electric vehicle (HEV). And this paper assesses the fuel economy label of HEV.

  • PDF

Application of Superconducting Flywheel Energy Storage System to Inertia-Free Stand-Alone Microgrid

  • Bae, SunHo;Choi, DongHee;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1442-1448
    • /
    • 2017
  • Recently, electric power systems have been operating with tight margins and have reached their operational limits. Many researchers consider a microgrid as one of the best solutions to relieve that problem. The microgrid is generally powered by renewable energies that are connected through power converters. In contrast to the rotational machines in the conventional power plants, the converters do not have physical rotors, and therefore they do not have rotational inertia. Consequently, a stand-alone microgrid has no inertia when it is powered by the only converter-based-generators (CBGs). As a result, the relationship between power and frequency is not valid, and the grid frequency cannot represent the power balance between the generator and load. In this paper, a superconducting flywheel energy storage system (SFESS) is applied to an inertia-free stand-alone (IFSA) microgrid. The SFESS accelerates or decelerates its rotational speed by storing or releasing power, respectively, based on its rotational inertia. Then, power in the IFSA microgrid can be balanced by measuring the rotor speed in the SFESS. This method does not have an error accumulation problem, which must be considered for the state of charge (SOC) estimation in the battery energy storage system (BESS). The performance of the proposed method is verified by an electromagnetic transient (EMT) simulation.

Electrochemical Characteristics of Li3V2(PO4)3 Negative Electrode as a Function of Crystallinity (결정화도에 따른 Li3V2(PO4)3 음극의 전기화학적 특성)

  • Ku, Jun-Whan;Park, Kyung-Jin;Ryu, Ji-Heon;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • $Li_3V_2(PO_4)_3$/carbon composite materials are synthesized from a sucrose-containing precursor. Amorphous $Li_3V_2(PO_4)_3/C$ (a-LVP/C) and crystalline $Li_3V_2(PO_4)_3/C$ (c-LVP/C) are obtained by calcining at $600^{\circ}C$ and $800^{\circ}C$, respectrively, and electrochemical performance as the negative electrode for lithium secondary batteries is compared for two samples. The a-LVP electrode shows much larger reversible capacity than c-LVP, which is ascribed to the spatial $Li^+$ channels and flexible structure of amorphous material. In addition, this electrode shows an excellent rate capability, which can be accounted for by the facilitated $Li^+$ diffusion through the defect sites. The sloping voltage profile is another advantageous feature for easy SOC (state of charge) estimation.