• 제목/요약/키워드: SOC(State of Charge)

검색결과 231건 처리시간 0.027초

다양한 주행모드 및 시험 조건에 따른 전기자동차 효율 특성 (The Efficiency Characteristics of Electric Vehicle (EV) According to the Diverse Driving Modes and Test Conditions)

  • 이민호;김성우;김기호
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.56-62
    • /
    • 2017
  • Although most electricity production contributes to air pollution, the vehicle organizations and environmental agency categorizes all EVs as zero-emission vehicles because they produce no direct exhaust or emissions. Currently available EVs have a shorter range per charge than most conventional vehicles have per tank of gas. EVs manufacturers typically target a range of 160 km over on a fully charged battery. The energy efficiency and driving range of EVs varies substantially based on driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Additional devices significant inclines also reduces range. Based on these driving modes and climate conditions, this paper discusses the performance characteristics of EVs on energy efficiency and driving range. Test vehicles were divided by low / high-speed EVs. The difference of test vehicles are on the vehicle speed and size. Low-speed EVs is a denomination for battery EVs that are legally limited to roads with posted speed limits as high as 72 km/h depending on the particular laws, usually are built to have a top speed of 60 km/h, and have a maximum loaded weight of 1,400 kg. Each vehicle test was performed according to the driving modes and test temperature ($-25^{\circ}C{\sim}35^{\circ}C$). It has a great influence on fuel efficiency amd driving distance according to test temperature conditions.

차량용 12-V 납축전지의 충·방전 모델링 (Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery)

  • 김의성;전세훈;전원진;신치범;정승면;김성태
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.242-248
    • /
    • 2007
  • 자동차 전기장치 시스템을 최적화하기 위해서는 차량용 납축전지의 충전 및 방전 거동을 예측할 수 있는 모델링 기술이 필요하다. 본 연구에서는 유한요소법을 이용하여 차량용 12-V 납축전지의 충전 및 방전 거동을 예측할 수 있는 2차원 모델링을 수행하였다. 이 연구에 사용된 수학적 모델에는 전기화학반응 속도론, 전해질의 유동, 대류에 의한 이온의 전달현상, 전극의 시간에 따른 공극률의 변화 등이 고려되었다. 모델링의 신뢰성을 검증하기 위하여 방전 및 충전실험을 수행하였다. 방전실험은 $25^{\circ}C$에서 C/5, C/10 및 C/20의 방전율에 대하여 수행하였고, 충전실험은 $25^{\circ}C$에서 정전류-정전압 방법으로(제한전류 30A, 제한전압 14.24 V) 수행하였다. 모델에 근거하여 예측된 충 방전 거동은 충 방전 실험결과와 잘 일치하였다. 또한 2차원 모델링을 통하여 충 방전이 진행되는 동안 실제로 측정이 불가능한 납축전지 내부의 전류밀도, 전해액의 농도 및 충전상태(state of charge; SOC)의 분포를 예측할 수 있었다.

리튬 이온 폴리머 전지의 사이클 수명 모델링 (Modeling of the Cycle Life of a Lithium-ion Polymer Battery)

  • 김의성;이정빈;이재신;신치범;최제훈;이석범
    • Korean Chemical Engineering Research
    • /
    • 제47권3호
    • /
    • pp.344-348
    • /
    • 2009
  • 리튬 이온 폴리머 전지의 사이클에 의한 용량 감소를 예측할 수 있는 1차원 모델링을 수행하였다. 이 연구에 사용된 수학적 모델에서는 전지 셀에서의 전기화학반응 속도론, 이온의 전달현상, 용량 감소 반응(parasitic reaction)을 고려하였다. 모델링의 신뢰성을 검증하기 위하여 LG화학에서 개발된 5Ah 급 리튬 이온 폴리머 전지의 사이클 성능을 측정하여 얻은 결과와 모델링의 결과를 비교하였다. 사이클 시험은 정전류 방전과 정전류-정전압 충전을 수행하였다. 방전 시험은 1C로 수행하였다. 충전상태(state of charge; SOC)의 범위는 1부터 0.2 사이에서 수행하였다. 충전실험은 정전류-정전압 방법으로(제한전류 10C, 제한전압 4.2 V) 수행하였고, 정전압 충전일 때 충전 전류가 50 mA에 도달하면 시험을 종료하였다. 전지의 용량측정은 사이클 시험이 시작전과 100 사이클마다 1C와 5C에서 용량을 측정하였다. 모델링에 근거하여 얻은 결과와 시험결과가 잘 일치하였다.

직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘 (A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

Lifetime Management Method of Lithium-ion battery for Energy Storage System

  • Won, Il-Kuen;Choo, Kyoung-Min;Lee, Soon-Ryung;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1173-1184
    • /
    • 2018
  • The lifetime of a lithium-ion battery is one of the most important issues of the energy storage system (ESS) because of its stable and reliable operation. In this paper, the lifetime management method of the lithium-ion battery for energy storage system is proposed. The lifetime of the lithium-ion battery varies, depending on the power usage, operation condition, and, especially the selected depth of discharge (DOD). The proposed method estimates the total lifetime of the lithium-ion battery by calculating the total transferable energy corresponding to the selected DOD and achievable cycle (ACC) data. It is also demonstrated that the battery model can obtain state of charge (SOC) corresponding to the ESS operation simultaneously. The simulation results are presented performing the proposed lifetime management method. Also, the total revenue and entire lifetime prediction of a lithium-ion battery of ESS are presented considering the DOD, operation and various condition for the nations of USA and Korea using the proposed method.

VEHICLE ELECTRIC POWER SIMULATOR FOR OPTIMIZING THE ELECTRIC CHARGING SYSTEM

  • Lee, Wootaik;Sunwoo, MyoungHo
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.157-164
    • /
    • 2001
  • The vehicle electric power system, which consists of two major components: a generator and a battery, which have to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight is required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study. The simulator can be utilized to determine the optimal capacities of generators and batteries. To improve the expandability and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC. Empirical electrical models of various generators and batteries, and the structure of the simulation program are presented. For executing the vehicle electric power simulator, data of engine speed profile and electric loads of a vehicle are required, and these data are obtained from real driving conditions. In order to improve the accuracy of the simulator, numerous driving data of a vehicle are logged and analyzed.

  • PDF

풍력발전의 출력 변동 저감을 위한 ESS 최소용량 산정기법 (Method of Minimizing ESS Capacity for Mitigating the Fluctuation of Wind Power Generation System)

  • 김재홍;강명석;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.119-125
    • /
    • 2011
  • In this paper, we have studied about minimizing the Energy Storage System (ESS) capacity for mitigating the fluctuation of Wind Turbine Generation System (WTGS) by using Electric Double Layer Capacitor (EDLC) and Battery Energy Storage System (BESS). In this case, they have some different characteristics: The EDLC has the ability of generating the output power at high frequency. Thus, it is able to reduce the fluctuation of WTGS in spite of high cost. The BESS, by using Li-Ion battery, takes the advantage of high energy density, however it is limited to use at low frequency response. To verify the effectiveness of the proposed method, simulations are carried out with the actual data of 2MW WTGS in case of worst fluctuation of WTGS is happened. By comparing simulation results, this method shows the excellent performance. Therefore, it is very useful for understanding and minimizing the ESS capacity for mitigating the fluctuation of WTGS.

SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석 (The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance)

  • 이대흥;정종렬;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.

Development of an Advanced Hybrid Energy Storage System for Hybrid Electric Vehicles

  • Lee, Baek-Haeng;Shin, Dong-Hyun;Song, Hyun-Sik;Heo, Hoon;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.51-60
    • /
    • 2009
  • Hybrid Electric Vehicles (HEVs) utilize electric power as well as a mechanical engine for propulsion; therefore the performance of HEV s can be directly influenced by the characteristics of the Energy Storage System (ESS). The ESS for HEVs generally requires high power performance, long cycle life and reliability, as well as cost effectiveness. So the Hybrid Energy Storage System (HESS), which combines different kinds of storage devices, has been considered to fulfill both performance and cost requirements. To improve operating efficiency, cycle life, and cold cranking of the HESS, an advanced dynamic control regime with which pertinent storage devices in the HESS can be selectively operated based on their status was presented. Verification tests were performed to confirm the degree of improvement in energy efficiency. In this paper, an advanced HESS with improved an Battery Management System (BMS), which has optimal switching control function based on the estimated State of Charge (SOC), has been developed and verified.

캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석 (Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System)

  • 심규석;박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.