• Title/Summary/Keyword: SNR loss

Search Result 123, Processing Time 0.02 seconds

Audio Stream Delivery Using AMR(Adaptive Multi-Rate) Coder with Forward Error Correction in the Internet (인터넷 환경에서 FEC 기능이 추가된 AMR음성 부호화기를 이용한 오디오 스트림 전송)

  • 김은중;이인성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2027-2035
    • /
    • 2001
  • In this paper, we present an audio stream delivery using the AMR (Adaptive Multi-Rate) coder that was adopted by ETSI and 3GPP as a standard vocoder for next generation IMT-2000 service in which includes combined sender (FEC) and receiver reconstruction technique in the Internet. By use of the media-specific FEC scheme, the possibility to recover lost packets can be much increased due to the addition of repair data to a main data stream, by which the contents of lost packets can be recovered. The AMR codec is based on the code-excited linear predictive (CELP) coding model. So we use a frame erasure concealment for CELP-based coders. The proposed scheme is evaluated with ITU-T G.729 (CS-ACELP) coder and AMR - 12.2 kbit/s through the SNR (Signal to Noise Ratio) and the MOS (Mean Opinion Score) test. The proposed scheme provides 1.1 higher in Mean Opinion Score value and 5.61 dB higher than AMR - 12.2 kbit/s in terms of SNR in 10% packet loss, and maintains the communicab1e quality speech at frame erasure rates lop to 20%.

  • PDF

Study on Indoor Wireless Environment of mmWave WLAN Communication (초고주파 근거리 통신의 실내 무선 환경 연구)

  • Shin, Dong-Il;Kim, Woo-Seong;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.147-152
    • /
    • 2018
  • Recently, as the demand for transmission of ultra-high quality media data such as UHD, AR, and VR increases, various technologies for this have been actively developed and IEEE 802.11ad standard have been commercialized. In this paper, a test bed is constructed to analyze the indoor wireless environment using the IEEE 802.11ad standard based on mmWave, and the experimental results of various indoor wireless environments are introduced and analyzed. We compared the data from the module by data transmission, such as signal to noise ratio(SNR) and throughput. And we measured the beam pattern and width of the module and compared the effects on the indoor environment of the corridor and the office. This shows that the signal reflection of the wall shows higher SNR values and is more suitable to use for indoor than outdoor. It is confirmed that the loss when not in line of sight(LoS) is not enough to compensate the wall reflected signal. As a result, it is judged to be suitable for the indoor use of the mmWave LAN and can be usefully used for further experiments.

Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy

  • Pae Sun Suh;Ji Eun Park;Yun Hwa Roh;Seonok Kim;Mina Jung;Yong Seo Koo;Sang-Ahm Lee;Yangsean Choi;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.374-383
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learningbased image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). Materials and Methods: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. Results: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). Conclusion: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

Fabrication and Evaluation of Thin Film Filter Type 4-Channel Wavelength Division Multiplexing Device (박막필터형 4- 채널 파장분할 다중화 소자의 제작 및 평가)

  • Park, Kyung Hyun;Seo, Wan Seok;Chung, Young Man;Park, Hee Gap;Ma, Dong Sung;Kang, Min Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.400-407
    • /
    • 1987
  • Thin film filter type 4-channel wavelength division multiplexing(WDM) device was designed and fabricated for the application in optical subscriber loop system. It has multi-mode fiber pigtails and four wavelength division consisting of 0.81, 0.89, 1.2 and 1.3 um. The evaluated performances are 1-2d B of insertion loss(connector loss excluded)and 30-35d B of crosstalk attenuation for all channels. The performance of the fabricated device was tested in the wideband optical transmission experiment, where the SNR degradation due to the crosstalk of the device was found to be within a measurement error.

  • PDF

Meta learning-based open-set identification system for specific emitter identification in non-cooperative scenarios

  • Xie, Cunxiang;Zhang, Limin;Zhong, Zhaogen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1755-1777
    • /
    • 2022
  • The development of wireless communication technology has led to the underutilization of radio spectra. To address this limitation, an intelligent cognitive radio network was developed. Specific emitter identification (SEI) is a key technology in this network. However, in realistic non-cooperative scenarios, the system may detect signal classes beyond those in the training database, and only a few labeled signal samples are available for network training, both of which deteriorate identification performance. To overcome these challenges, a meta-learning-based open-set identification system is proposed for SEI. First, the received signals were pre-processed using bi-spectral analysis and a Radon transform to obtain signal representation vectors, which were then fed into an open-set SEI network. This network consisted of a deep feature extractor and an intrinsic feature memorizer that can detect signals of unknown classes and classify signals of different known classes. The training loss functions and the procedures of the open-set SEI network were then designed for parameter optimization. Considering the few-shot problems of open-set SEI, meta-training loss functions and meta-training procedures that require only a few labeled signal samples were further developed for open-set SEI network training. The experimental results demonstrate that this approach outperforms other state-of-the-art SEI methods in open-set scenarios. In addition, excellent open-set SEI performance was achieved using at least 50 training signal samples, and effective operation in low signal-to-noise ratio (SNR) environments was demonstrated.

Impact of Channel Estimation Errors on BER Performance of Single-User Decoding NOMA System

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • In the fifth generation (5G) and beyond 5G (B5G) mobile communication, non-orthogonal multiple access (NOMA) has attracted great attention due to higher spectral efficiency and massive connectivity. We investigate the impacts of the channel estimation errors on the bit-error rate (BER) of NOMA, especially with the single-user decoding (SUD) receiver, which does not perform successive interference cancellation (SIC), in contrast to the conventional SIC NOMA scheme. First, an analytical expression of the BER for SUD NOMA with channel estimation errors is derived. Then, it is demonstrated that the BER performance degrades severely up to the power allocation less than about 20%. Additionally, we show that for the fixed power allocation of 10% in such power allocation range, the signal-to-noise (SNR) loss owing to channel estimation errors is about 5 dB. As a consequence, the channel estimation error should be considered for the design of the SUD NOMA scheme.

Efficient Detection of Space-Time Block Codes Based on Parallel Detection

  • Kim, Jeong-Chang;Cheun, Kyung-Whoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.100-107
    • /
    • 2011
  • Algorithms based on the QR decomposition of the equivalent space-time channel matrix have been proved useful in the detection of V-BLAST systems. Especially, the parallel detection (PD) algorithm offers ML approaching performance up to 4 transmit antennas with reasonable complexity. We show that when directly applied to STBCs, the PD algorithm may suffer a rather significant SNR degradation over ML detection, especially at high SNRs. However, simply extending the PD algorithm to allow p ${\geq}$ 2 candidate layers, i.e. p-PD, regains almost all the loss but only at a significant increase in complexity. Here, we propose a simplification to the p-PD algorithm specific to STBCs without a corresponding sacrifice in performance. The proposed algorithm results in significant complexity reductions for moderate to high order modulations.

Implementation of Lattice Reduction-aided Detector using GPU on SDR System (SDR 시스템에서 GPU를 사용한 Lattice Reduction-aided 검출기 구현)

  • Kim, Tae Hyun;Leem, Hyun Seok;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • This paper presents an implementation of Lattice Reduction (LR)-aided detector for Multiple-Input Multiple-Output (MIMO) system using Graphics Processing Unit (GPU). GPU is a parallel processor which has a number of Arithmetic Logic Units (ALUs), thus, it can minimize the operation time of LR algorithm through the parallelization using multiple threads in the GPU. Through the implemented LR-aided detector, we verify that the LR-aided detector operates a lot faster than Maximum Likelihood (ML) detector. The implemented LR-aided detector has been applied to WiMAX system to show the feasibility of its real-time processing. In addition, we demonstrate that the processing time can be reduced at the cost of 3dB SNR loss by limiting the repeating loop in Lenstra-Lenstra-Lovasz (LLL) algorithm which is frequently used in LR-aided detector.

Performance Degradation due to Phase Jitter in IEEE 802.16 Downlink Signals

  • Kim, Youngsun;Kim, Seung-Geun;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1681-1684
    • /
    • 2002
  • A multilevel modulation with selectable constellations is adopted in the downlink subframe modulation of the IEEE 802.16 standard to increase the total throughput. One of the decision factors of the modulation is the location of SS(Subscriber Station) . Also, for the 802.16, low phase noise of local oscillator is needed due to high operating frequency and severe loss in the propagation channel. We investigate the BER of down-link subframe with the phase jitter under the standard's specified LOS(line of sight) and multipath environment with randomly generated SS locations. Simulation results show BER performance degradation for the modulation corresponding to selected constellations and additionally required SNR to achieve 10$\^$-3/ BER under various phase jitter.

  • PDF