• Title/Summary/Keyword: SNR Power Spectra Ratio

Search Result 2, Processing Time 0.019 seconds

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Classification of Environmentally Distorted Acoustic Signals in Shallow Water Using Neural Networks : Application to Simulated and Measured Signal

  • Na, Young-Nam;Park, Joung-Soo;Chang, Duck-Hong;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.54-65
    • /
    • 1998
  • This study attempts to test the classifying performance of a neural network and thereby examine its applicability to the signals distorted in a shallow water environment. Linear frequency modulated(LFM) signals are simulated by using an acoustic model and also measured through sea experiment. The network is constructed to have three layers and trained on both data sets. To get normalized power spectra as feature vectors, the study considers the three transforms : shot-time Fourier transform (STFT), wavelet transform (WT) and pseudo Wigner-Ville distribution (PWVD). After trained on the simulated signals over water depth, the network gives over 95% performance with the signal to noise ratio (SNR) being up to-10 dB. Among the transforms, the PWVD presents the best performance particularly in a highly noisy condition. The network performs worse with the summer sound speed profile than with the winter profile. It is also expected to present much different performance by the variation of bottom property. When the network is trained on the measured signals, it gives a little better results than that trained on the simulated data. In conclusion, the simulated signals are successfully applied to training a network, and the trained network performs well in classifying the signals distorted by a surrounding environment and corrupted by noise.

  • PDF