• Title/Summary/Keyword: SNPs

Search Result 925, Processing Time 0.025 seconds

Comprehensive Study on Associations Between Nine SNPs and Glioma Risk

  • Liu, Hai-Bo;Peng, Yu-Ping;Dou, Chang-Wu;Su, Xiu-Lan;Gao, Nai-Kang;Tian, Fu-Ming;Bai, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4905-4908
    • /
    • 2012
  • Aim: Glioma cancer is the most common type of adult brain tumor. Recent genome-wide association studies (GWAS) have identified various new susceptibility regions and here we conducted an extensive analysis of associations between 12 single nucleotide polymorphisms (SNPs) and glioma risk. Methods: A total of 197 glioma cases and 197 health controls were selected, and 9 SNPs in 8 genes were analyzed using the Sequenom MassARRAY platform and Sequenom Assay Design 3.1 software. Results: We found the MAF among selected controls were consistent with the MAF from the NCBI SNP database. Among 9 SNPs in 8 genes, we identified four significant SNP genotypes associated with the risk of glioma, C/C genotype at rs730437 and T/T genotype at rs1468727 in ERGF were protective against glioma, whereas the T/T genotype at rs1799782 in XRCC1 and C/C genotype at rs861539 in XRCC3 conferred elevated risk. Conclusion: Our comprehensive analysis of nine SNPs in eight genes suggests that the rs730437 and rs1468727 in ERGF, rs1799782 in XRCC1 gene, and rs861539 in XRCC3 gene are associated with glioma risk. These findings indicate that genetic variants of various genes play a complex role in the development of glioma.

Bioinformatic Prediction of SNPs within miRNA Binding Sites of Inflammatory Genes Associated with Gastric Cancer

  • Song, Chuan-Qing;Zhang, Jun-Hui;Shi, Jia-Chen;Cao, Xiao-Qin;Song, Chun-Hua;Hassan, Adil;Wang, Peng;Dai, Li-Ping;Zhang, Jian-Ying;Wang, Kai-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.937-943
    • /
    • 2014
  • Polymorphisms in miRNA binding sites have been shown to affect miRNA binding to target genes, resulting in differential mRNA and protein expression and susceptibility to common diseases. Our purpose was to predict SNPs (single nucleotide polymorphisms) within miRNA binding sites of inflammatory genes in relation to gastric cancer. A complete list of SNPs in the 3'UTR regions of all inflammatory genes associated with gastric cancer was obtained from Pubmed. miRNA target prediction databases (MirSNP, Targetscan Human 6.2, PolymiRTS 3.0, miRNASNP 2.0, and Patrocles) were used to predict miRNA target sites. There were 99 SNPs with MAF>0.05 within the miRNA binding sites of 41 genes among 72 inflammation-related genes associated with gastric cancer. NF-${\kappa}B$ and JAK-STAT are the two most important signaling pathways. 47 SNPs of 25 genes with 95 miRNAs were predicted. CCL2 and IL1F5 were found to be the shared target genes of hsa-miRNA-624-3p. Bioinformatic methods could identify a set of SNPs within miRNA binding sites of inflammatory genes, and provide data and direction for subsequent functional verification research.

Tracing the breeding farm of domesticated pig using feature selection (Sus scrofa)

  • Kwon, Taehyung;Yoon, Joon;Heo, Jaeyoung;Lee, Wonseok;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1540-1549
    • /
    • 2017
  • Objective: Increasing food safety demands in the animal product market have created a need for a system to trace the food distribution process, from the manufacturer to the retailer, and genetic traceability is an effective method to trace the origin of animal products. In this study, we successfully achieved the farm tracing of 6,018 multi-breed pigs, using single nucleotide polymorphism (SNP) markers strictly selected through least absolute shrinkage and selection operator (LASSO) feature selection. Methods: We performed farm tracing of domesticated pig (Sus scrofa) from SNP markers and selected the most relevant features for accurate prediction. Considering multi-breed composition of our data, we performed feature selection using LASSO penalization on 4,002 SNPs that are shared between breeds, which also includes 179 SNPs with small between-breed difference. The 100 highest-scored features were extracted from iterative simulations and then evaluated using machine-leaning based classifiers. Results: We selected 1,341 SNPs from over 45,000 SNPs through iterative LASSO feature selection, to minimize between-breed differences. We subsequently selected 100 highest-scored SNPs from iterative scoring, and observed high statistical measures in classification of breeding farms by cross-validation only using these SNPs. Conclusion: The study represents a successful application of LASSO feature selection on multi-breed pig SNP data to trace the farm information, which provides a valuable method and possibility for further researches on genetic traceability.

Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens

  • Kong, H.R.;Anthony, N.B.;Rowland, K.C.;Khatri, B.;Kong, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Objective: Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. Methods: Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). Results: Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. Conclusion: In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

Single Nucleotide Polymorph isms of a 16 kb Region on Human Chromosome 11 p15.5 that Includes the H19 Gene

  • Park, Mi-Hyun;Ku, Hyeon-Jeong;Lee, Hye-Ja;Kim, Kwang-Joong;Park, Chan;Oh, Bermseok;Kimm, Ku-Chan;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.74-79
    • /
    • 2005
  • The H19 gene, located at human chromosome 11p15.5, is imprinted in most normal human tissues. However, imprinting is often lost in tumors suggesting H19 is a putative tumor suppressor. We analyzed the single nucleotide polymorphisms (SNPs) of a 16 kb region that includes the H19 gene and its imprinting control region (ICR) in the Korean population. To identify SNPs, we directly sequenced this region in 18 Korean subjects. We identified 64 SNPs, of which 7 were in the exons of H19, 2 were in the introns, 14 were in the 3' intergenic region and 41 were in the 5' intergenic region. Of the 64 SNPs, 21 had not previously been reported and thus appear to be unique to the Korean population. The identified SNPs of H19 in the Korean population may eventually be useful as genetic markers associated with various diseases. In this study, 7 of the 64 identified SNPs were at CTCF binding sites in the ICR and may affect regulation of H19 gene imprinting. Thus, several genetic variations of the H19 gene may be important markers in human diseases that involve genomic imprinting, including cancer.

Identification of Causal and/or Rare Genetic Variants for Complex Traits by Targeted Resequencing in Population-based Cohorts

  • Kim, Yun-Kyoung;Hong, Chang-Bum;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 2010
  • Genome-wide association studies (GWASs) have greatly contributed to the identification of common variants responsible for numerous complex traits. There are, however, unavoidable limitations in detecting causal and/or rare variants for traits in this approach, which depends on an LD-based tagging SNP microarray chip. In an effort to detect potential casual and/or rare variants for complex traits, such as type 2 diabetes (T2D) and triglycerides (TGs), we conducted a targeted resequencing of loci identified by the Korea Association REsource (KARE) GWAS. The target regions for resequencing comprised whole exons, exon-intron boundaries, and regulatory regions of genes that appeared within 1 Mb of the GWA signal boundary. From 124 individuals selected in population-based cohorts, a total of 0.7 Mb target regions were captured by the NimbleGen sequence capture 385K array. Subsequent sequencing, carried out by the Roche 454 Genome Sequencer FLX, generated about 110,000 sequence reads per individual. Mapping of sequence reads to the human reference genome was performed using the SSAHA2 program. An average of 62.2% of total reads was mapped to targets with an average 22X-fold coverage. A total of 5,983 SNPs (average 846 SNPs per individual) were called and annotated by GATK software, with 96.5% accuracy that was estimated by comparison with Affymetrix 5.0 genotyped data in identical individuals. About 51% of total SNPs were singletons that can be considered possible rare variants in the population. Among SNPs that appeared in exons, which occupies about 20% of total SNPs, 304 nonsynonymous singletons were tested with Polyphen to predict the protein damage caused by mutation. In total, we were able to detect 9 and 6 potentially functional rare SNPs for T2D and triglycerides, respectively, evoking a further step of replication genotyping in independent populations to prove their bona fide relevance to traits.

Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein × Jersey cows

  • Raschia, Maria Agustina;Nani, Juan Pablo;Maizon, Daniel Omar;Beribe, Maria Jose;Amadio, Ariel Fernando;Poli, Mario Andres
    • Journal of Animal Science and Technology
    • /
    • v.60 no.12
    • /
    • pp.31.1-31.10
    • /
    • 2018
  • Background: Research on loci influencing milk production traits of dairy cattle is one of the main topics of investigation in livestock. Many genomic regions and polymorphisms associated with dairy production have been reported worldwide. In this context, the purpose of this study was to identify candidate loci associated with milk yield in Argentinean dairy cattle. A database of candidate genes and single nucleotide polymorphisms (SNPs) for milk production and composition was developed. Thirty-nine SNPs belonging to 22 candidate genes were genotyped on 1643 animals (Holstein and Holstein x Jersey). The genotypes obtained were subjected to association studies considering the whole population and discriminating the population by Holstein breed percentage. Phenotypic data consisted of milk production values recorded during the first lactation of 1156 Holstein and 462 Holstein ${\times}$ Jersey cows from 18 dairy farms located in the central dairy area of Argentina. From these records, 305-day cumulative milk production values were predicted. Results: Eight SNPs (rs43375517, rs29004488, rs132812135, rs137651874, rs109191047, rs135164815, rs43706485, and rs41255693), located on six Bos taurus autosomes (BTA4, BTA6, BTA19, BTA20, BTA22, and BTA26), showed suggestive associations with 305-day cumulative milk production (under Benjamini-Hochberg procedure with a false discovery rate of 0.1). Two of those SNPs (rs43375517 and rs135164815) were significantly associated with milk production (Bonferroni adjusted p-values < 0.05) when considering the Holstein population. Conclusions: The results obtained are consistent with previously reported associations in other Holstein populations. Furthermore, the SNPs found to influence bovine milk production in this study may be used as possible candidate SNPs for marker-assisted selection programs in Argentinean dairy cattle.

Genetic structure analysis of domestic companion dogs using high-density SNP chip

  • Gwang Hyeon Lee;Jae Don Oh;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.138-144
    • /
    • 2024
  • Background: As the number of households raising companion dogs increases, the pet genetic analysis market also continues to grow. However, most studies have focused on specific purposes or native breeds. This study aimed to collect genomic data through single nucleotide polymorphism (SNP) chip analysis of companion dogs in South Korea and perform genetic diversity analysis and SNP annotation. Methods: We collected samples from 95 dogs belonging to 26 breeds, including mixed breeds, in South Korea. The SNP genotypes were obtained for each sample using an AxiomTM Canine HD Array. Quality control (QC) was performed to enhance the accuracy of the analysis. A genetic diversity analysis was performed for each SNP. Results: QC initially selected SNPs, and after excluding non-diverse ones, 621,672 SNPs were identified. Genetic diversity analysis revealed minor allele frequencies, polymorphism information content, expected heterozygosity, and observed heterozygosity values of 0.220, 0.244, 0.301, and 0.261, respectively. The SNP annotation indicated that most variations had an uncertain or minimal impact on gene function. However, approximately 16,000 non-synonymous SNPs (nsSNPs) have been found to significantly alter gene function or affect exons by changing translated amino acids. Conclusions: This study obtained data on SNP genetic diversity and functional SNPs in companion dogs raised in South Korea. The results suggest that establishing an SNP set for individual identification could enable a gene-based registration system. Furthermore, identifying and researching nsSNPs related to behavior and diseases could improve dog care and prevent abandonment.

Polymorphisms of methylenetetrahydrofolate reductase are not a risk factor for Kawasaki disease in the Korean population

  • Yoon, Kyung-Lim;Ko, Jin-Hee;Shim, Kye-Shik;Han, Mi-Young;Cha, Sung-Ho;Kim, Su-Kang;Jung, Joo-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.8
    • /
    • pp.335-339
    • /
    • 2011
  • Purpose: Hyperhomocysteinemia is known as a risk factor for atherosclerosis. Preclinical arteriosclerosis is noted and premature atherosclerosis is known to be accelerated in Kawasaki disease (KD) patients. Genetic polymorphisms in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene result in elevated plasma homocysteine concentrations and are known to be associated with the development of coronary artery disease. Our hypothesis is that single nucleotide polymorphisms (SNPs) of the MTHFR gene are related to the development of KD and coronary artery lesions (CALs). Methods: For this study, we selected 3 candidate single nucleotide polymorphisms (SNPs) (rs2274976, rs1801131, and rs1801133) of MTHFR. These SNPs are located on chromosome 1p36.3. We included 101 KD patients and 306 healthy adults as controls in this study. CALs were seen in 38 patients. Genotypes of the selected SNPs were determined by direct sequencing and analyzed with SNPAlyze. Results: The genetic distribution and allelic frequency of the 3 MTHFR SNPs (rs2274976, rs1801131, and rs1801133) were not significantly different in patients with KD compared to the control group (P=0.71, 0.17, and 0.96, respectively). There was no difference in the genetic distribution of the MTHFR SNPs between the normal control group and the CAL group (P=0.43, 0.39, 0.52 respectively). Conclusion: The genetic distribution of the MTHFR SNPs (rs2274976, rs1801131, and rs1801133) was not different in the KD group compared to the control group. In addition, the genetic distribution of these SNPs was not different in the CAL group compared to the control group in the Korean population.