• Title/Summary/Keyword: SNP array

Search Result 54, Processing Time 0.034 seconds

Predictive Models for Sasang Constitution Types Using Genetic Factors (유전지표를 활용한 사상체질 분류모델)

  • Ban, Hyo-Jeong;Lee, Siwoo;Jin, Hee-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.32 no.2
    • /
    • pp.10-21
    • /
    • 2020
  • Objectives Genome-wide association studies(GWAS) is a useful method to identify genetic associations for various phenotypes. The purpose of this study was to develop predictive models for Sasang constitution types using genetic factors. Methods The genotypes of the 1,999 subjects was performed using Axiom Precision Medicine Research Array (PMRA) by Life Technologies. All participants were prescribed Sasang Constitution-specific herbal remedies for the treatment, and showed improvement of original symptoms as confirmed by Korean medicine doctor. The genotypes were imputed by using the IMPUTE program. Association analysis was conducted using a logistic regression model to discover Single Nucleotide Polymorphism (SNP), adjusting for age, sex, and BMI. Results & Conclusions We developed models to predict Korean medicine constitution types using identified genectic factors and sex, age, BMI using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). Each maximum Area Under the Curve (AUC) of Teaeum, Soeum, Soyang is 0.894, 0.868, 0.767, respectively. Each AUC of the models increased by 6~17% more than that of models except for genetic factors. By developing the predictive models, we confirmed usefulness of genetic factors related with types. It demonstrates a mechanism for more accurate prediction through genetic factors related with type.

Genomic Susceptibility Analysis for Atopy Disease Using Cord Blood DNA in a Small Cohort

  • Koh, Eun Jung;Kim, Seung Jun;Ahn, Jeong Jin;Yang, Jungeun;Oh, Moon Ju;Hwang, Seung Yong
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.304-308
    • /
    • 2018
  • Atopic disease is caused by a complex combination of environmental factors and genetic factors, and studies on influence of exposure to various environmental factors on atopic diseases are continuously reported. However, the exact cause of atopic dermatitis is not yet known. Our study was conducted to analyse the association of SNPs with the development of atopic disease in a small cohort. Samples were collected from the Mothers' and Children's Environmental Health (MOCEH) study and 192 cord blood DNA samples were used to identify incidence of atopy due to influence of exposure to environmental factors. Genetic elements were analysed using a precision medicine research (PMR) array designed with various SNPs for personalized medicine. Case-control analysis of atopy disease revealed 253 significant variants (p<0.0001) and SNPs on five genes (CARD11, ZNF365, KIF3A, DMRTA1, and SFMBT1) were variants identified in previous atopic studies. These results are important to confirm the genetic mutation that may lead to the onset of foetal atopy due to maternal exposure to harmful environmental factors. Our results also suggest that a small-scale genome-wide association analysis is beneficial to confirm specific variants as direct factors in the development of atopy.

Breast Cancer Association Studies in a Han Chinese Population using 10 European-ancestry-associated Breast Cancer Susceptibility SNPs

  • Guan, Yan-Ping;Yang, Xue-Xi;Yao, Guang-Yu;Qiu, Fei;Chen, Jun;Chen, Lu-Jia;Ye, Chang-Sheng;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • Background: Genome-wide association studies (GWAS) have identified various genetic susceptibility loci for breast cancer based mainly on European-ancestry populations. Differing linkage disequilibrium patterns exist between European and Asian populations. Methods: Ten SNPs (rs2075555 in COL1A1, rs12652447 in FBXL17, rs10941679 in 5p12/MRPS30, rs11878583 in ZNF577, rs7166081 in SMAD3, rs16917302 in ZNF365, rs311499 in 20q13.3, rs1045485 in CASP8, rs12964873 in CDH1 and rs8170 in 19p13.1) were here genotyped in 1009 Chinese females (487 patients with breast cancer and 522 control subjects) using the Sequenom MassARRAY iPLEX platform. Association analysis based on unconditional logistic regression was carried out to determine the odds ratio (OR) and 95% confidence interval (95% CI) for each SNP. Stratification analyses were carried out based on the estrogen receptor (ER) and progesterone receptor (PR) status. Results: Among the 10 SNPs, rs10941679 showed significant association with breast cancer when differences between the case and control groups in this Han Chinese population were compared (30.09% GG, 45.4% GA and 23.7% AA; P = 0.012). Four SNPs (rs311499, rs1045485, rs12964873 and rs8170) showed no polymorphisms in our study. The remaining five SNPs showed no association with breast cancer in the present population. Immunohistochemical tests showed that rs2075555 was associated with ER status; the AA genotype showed greater association with ER negative than ER positive (OR = 0.54, 95% CI, 0.29-0.99; P = 0.046). AA of rs7166081 was also associated with ER status, but showed a greater association with ER positive than negative (OR = 1.59, 95% CI = 1.04-2.44; P = 0.031). However, no significant associations were found among the SNPs and PR status. Conclusion: In this study using a Han Chinese population, rs10941679 was the only SNP associated with breast cancer risk, indicating a difference between European and Chinese populations in susceptibility loci. Therefore, confirmation studies are necessary before utilization of these loci in Chinese.

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.

Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds

  • Nikitkina, Elena V.;Dementieva, Natalia V.;Shcherbakov, Yuri S.;Atroshchenko, Mikhail M.;Kudinov, Andrei A.;Samoylov, Oleg I.;Pozovnikova, Marina V.;Dysin, Artem P.;Krutikova, Anna A.;Musidray, Artem A.;Mitrofanova, Olga V.;Plemyashov, Kirill V.;Griffin, Darren K.;Romanov, Michael N.
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1827-1838
    • /
    • 2022
  • Objective: The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. Methods: Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiom Equine Genotyping Array. Results: We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME/NM23 family member 8 (NME8), olfactory receptor family 2 subfamily AP member 1 (OR2AP1), and olfactory receptor family 6 subfamily C member 4 (OR6C4). Potential implications of effects of these genes on sperm motility are herein discussed. Conclusion: The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system.

A Pilot Genome-wide Association Study of Breast Cancer Susceptibility Loci in Indonesia

  • Haryono, Samuel J;Datasena, I Gusti Bagus;Santosa, Wahyu Budi;Mulyarahardja, Raymond;Sari, Kartika
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2231-2235
    • /
    • 2015
  • Genome-wide association studies (GWASs) of the entire genome provide a systematic approach for revealing novel genetic susceptibility loci for breast cancer. However, genetic association studies have hitherto been primarily conducted in women of European ancestry. Therefofre we here performed a pilot GWAS with a single nucleotide polymorphism (SNP) array 5.0 platform from $Affymetrix^{(R)}$ that contains 443,813 SNPs to search for new genetic risk factors in 89 breast cancer cases and 46 healthy women of Indonesian ancestry. The case-control association of the GWAS finding set was evaluated using PLINK. The strengths of allelic and genotypic associations were assessed using logistic regression analysis and reported as odds ratios (ORs) and P values; P values less than $1.00{\times}10^{-8}$ and $5.00{\times}10^{-5}$ were required for significant association and suggestive association, respectively. After analyzing 292,887 SNPs, we recognized 11 chromosome loci that possessed suggestive associations with breast cancer risk. Of these, however, there were only four chromosome loci with identified genes: chromosome 2p.12 with the CTNNA2 gene [Odds ratio (OR)=1.20, 95% confidence interval (CI)=1.13-1.33, $P=1.08{\times}10^{-7}$]; chromosome 18p11.2 with the SOGA2 gene (OR=1.32, 95%CI=1.17-1.44, $P=6.88{\times}10^{-6}$); chromosome 5q14.1 with the SSBP2 gene (OR=1.22, 95%CI=1.11-1.34, $P=4.00{\times}10^{-5}$); and chromosome 9q31.1 with the TEX10 gene (OR=1.24, 95%CI=1.12-1.35, $P=4.68{\times}10^{-5}$). This study identified 11 chromosome loci which exhibited suggestive associations with the risk of breast cancer among Indonesian women.

Identification of Causal and/or Rare Genetic Variants for Complex Traits by Targeted Resequencing in Population-based Cohorts

  • Kim, Yun-Kyoung;Hong, Chang-Bum;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 2010
  • Genome-wide association studies (GWASs) have greatly contributed to the identification of common variants responsible for numerous complex traits. There are, however, unavoidable limitations in detecting causal and/or rare variants for traits in this approach, which depends on an LD-based tagging SNP microarray chip. In an effort to detect potential casual and/or rare variants for complex traits, such as type 2 diabetes (T2D) and triglycerides (TGs), we conducted a targeted resequencing of loci identified by the Korea Association REsource (KARE) GWAS. The target regions for resequencing comprised whole exons, exon-intron boundaries, and regulatory regions of genes that appeared within 1 Mb of the GWA signal boundary. From 124 individuals selected in population-based cohorts, a total of 0.7 Mb target regions were captured by the NimbleGen sequence capture 385K array. Subsequent sequencing, carried out by the Roche 454 Genome Sequencer FLX, generated about 110,000 sequence reads per individual. Mapping of sequence reads to the human reference genome was performed using the SSAHA2 program. An average of 62.2% of total reads was mapped to targets with an average 22X-fold coverage. A total of 5,983 SNPs (average 846 SNPs per individual) were called and annotated by GATK software, with 96.5% accuracy that was estimated by comparison with Affymetrix 5.0 genotyped data in identical individuals. About 51% of total SNPs were singletons that can be considered possible rare variants in the population. Among SNPs that appeared in exons, which occupies about 20% of total SNPs, 304 nonsynonymous singletons were tested with Polyphen to predict the protein damage caused by mutation. In total, we were able to detect 9 and 6 potentially functional rare SNPs for T2D and triglycerides, respectively, evoking a further step of replication genotyping in independent populations to prove their bona fide relevance to traits.

Ulcerative Colitis is Associated with Novel Polymorphisms in the Promoter Region of MIP-3${\alpha}$/CCL20 Gene

  • Choi, Suck-Chei;Lee, Eun-Kyung;Lee, Sung-Ga;Chae, Soo-Cheon;Lee, Myeung-Su;Seo, Geom-Seog;Kim, Sang-Wook;Yeom, Joo-Jin;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.205-214
    • /
    • 2005
  • Background: We examined global gene expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with ulcerative colitis (DC), and tested whether the identified genes with the altered expression might be associated with susceptibility to UC. Methods: PBMCs from 8 UC and 8 normal healthy (NH) volunteers were collected, and total RNAs were subjected to the human 8.0K cDNA chip for the micro array analysis. Real time-PCR (RT-PCR) was performed to verify the results of micro array. One hundred forty UC patients and 300 NH controls were recruited for single nucleotide polymorphism (SNP) analysis. Results: Twenty-five immune function-related genes with over 2-fold expression were identified. Of these genes, two chemokines, namely, CXCL1 and CCL20, were selected because of their potential importance in the evocation of host innate and adaptive immunity. Four SNPs were identified in the promoter and coding regions of CXCL1, while there was no significant difference between all patients with UC and controls in their polymorphisms, except minor association at g.57A>G (rs2071425, p=0.02). On the other hand, among three novel and one known SNPs identified in the promoter region of CCL20, g. -1,706 G>A (p=0.000000055), g. -1,458 G>A (p=0.0048), and g. -962C>A (p=0.0006) were found to be significantly associated with the susceptibility of Uc. Conclusion: Altered gene expression in mononuclear cells may contribute to IBD pathogenesis. Although the findings need to be confirmed in other populations with larger numbers of patients, the current results demonstrated that polymorphisms in the promoter region of CCL20 are positively associated with the development of Uc.

Association Between Single Nucleotide Polymorphisms in miRNA196a-2 and miRNA146a and Susceptibility to Hepatocellular Carcinoma in a Chinese Population

  • Zhang, Jun;Wang, Rui;Ma, Yan-Yun;Chen, Lin-Qi;Jin, Bo-Han;Yu, Hua;Wang, Jiu-Cun;Gao, Chun-Fang;Liu, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6427-6431
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the world and deeply threatens people's health, especially in China. Techniques of early diagnosis, prevention and prediction are still being discovered, among which the approaches based on single nucleotide polymorphisms in microRNA genes (miRNA SNPs) are newly proposed and show prospective potential. In particular, the association between SNPs in miRNA196a-2 (rs11614913) and miRNA146a (rs2910164) and HCC has been investigated. However, the conclusions made were conflicting, possibly due to insufficient sample size or population stratification. Further confirmations in well-designed large samples are still required. In this study, we verified the association between these two SNPs and the susceptibility to HCC by MassARRAY assay in a 2,000 large Chinese case-control sample. Significant association between rs11614913 and HCC was confirmed. Subjects with the genotype of CT+TT or T allele in rs11614913 were more resistant to HCC (CT+TT: OR (95% CI)=0.73 (0.57-0.92), P=0.01; T allele: OR (95% CI)=0.85 (0.75-0.97), P=0.02) and HBV-related HCC (CT+TT: OR (95% CI)=0.69 (0.53-0.90), P=0.01; T allele: OR (95% CI)=0.82 (0.71-0.95), P=0.01). The affected carriers of CT or TT also tended to have lower levels of serum AFP (P=0.01). This study demonstrated a role of rs11614913 in the etiology of HCC. Further research should focus on the clinical use of this miRNA SNP, so as to facilitate conquering HCC.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (인간 게놈의 Copy Number Variation과 유전자 질환)

  • Oh, Jung-Hwan;Nishimura, Ichiro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • Genetic variation in the human genome occurs on various levels; from the single nucleotide polymorphism to large, microscopically visible chromosome anomalies. It can be present in many forms, including variable number of tandem repeat (VNTRs; e.g., mini- and microsatellites), presence/absence of transposable elements (e.g., Alu elements), single nucleotide polymorphisms, and structural alterations (e.g., copy number variation, segmental duplication, inversion, translocation). Until recently SNPs were thought to be the main source of genetic and phenotypic human variation. However, the use of methods such as array comparative genomic hybridization (array CGH) and fluorescence in situ hybridization (FISH) have revealed the presence of copy number variations(CNVs) ranging from kilobases (kb) to megabases (Mb) in the human genome. There is great interest in the possibility that CNVs playa role in the etiology of common disease such as HIV-1/AIDS, diabetes, autoimmune disease, heart disease and cancer. The discovery of widespread copy number variation in human provides insights into genetic variability among populations and provides a foundation for studies of the contribution of CNVs to evolution and disease.