• 제목/요약/키워드: SN

검색결과 5,273건 처리시간 0.026초

TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석 (Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs)

  • 최준연;백혜득;최진호
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.163-176
    • /
    • 2014
  • 소셜미디어 확산으로 많은 사용자들이 SNS를 통해 자신의 생각과 의견을 표출하며 다른 사용자들과 상호작용하고 있다. 특히 트위터와 같은 마이크로블로그는 짧은 문장을 통해 영화, TV, 사회 현상 등과 같은 공통의 주제에 대해 많은 사람이 즉각적으로 의견을 표출하고 교환하는 플랫폼의 역할을 수행하고 있다. TV방송 프로그램에 대해서도 의견과 감정을 마이크로블로그를 통해 표출하고 있는데, 본 연구에서는 마이크로블로그의 내용과 시청률과의 관계를 살펴보기 위해, 지난 공중파 방송 프로그램에 대한 트윗을 수집하고 부적절한 트윗들을 제거한 후 형태소 분석을 수행하였다. 추출된 형태소뿐 아니라 이모티콘, 신조어 등 사용자가 입력한 모든 단어들을 후보 자질로 삼아 시청률과의 상관관계를 분석하였다. 실험을 위해 2013년 1월부터 10개월간의 예능프로그램 트윗의 데이터를 수집하여 전국 시청률 데이터와 비교 분석을 수행하였다. 트윗의 발생량은 일주일 중 방송된 요일에 가장 많았으며, 특히 방송시간 부근에서 급격히 증가하는 모습을 보였다. 이것은 전국에 동시간에 방송되는 공중파 프로그램의 특성상 공통된 관심 주제를 제공하기 때문에 나타나는 현상으로 여겨진다. 횟수 기반 자질로 방송 일의 총 트윗 수와 리트윗 수, 방송시간 중의 트윗 수와 리트윗 수와 시청률과의 상관 관계를 분석하였으나 모두 낮은 상관 계수를 나타냈다. 이것은 단순한 트윗 발생 빈도는 방송 프로그램의 만족도 또는 시청률을 제대로 반영하고 있지 못함을 의미한다. 내용 기반 자질로 추출한 단어들 중에는 높은 상관관계를 보여주는 단어들이 발견되었으며, 표준어가 아닌 이모티콘과 신조어 중에도 높은 상관관계를 보여주는 자질이 나타났다. 또한 방송시작 전과 후에 따라 상관계수가 높은 단어가 상이함을 발견하였다. 매주 같은 시간에 방송되는 TV 프로그램의 특성상, 방송을 기다리고 기대하는 내용의 트윗과 방송 후 소감을 표현하는 트윗의 내용에 차이가 존재하였다. 이러한 분석결과는 단어에 따라 시청률과 연관성이 높은 시간대가 달라짐을 의미하며, 시청률을 측정하고자 할 때 각 단어들의 시간대를 고려해서 사용해야 함을 의미한다. 본 연구에서 제안한 방법은 기존의 표본 추출을 통해 이루어지는 TV 시청률 측정을 보완할 수 있는 방법에 활용할 수 있으리라 기대된다.

데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발 (Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining)

  • 윤승진;김수환;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.1-17
    • /
    • 2015
  • 최근, 군에서 가장 이슈가 되고 있는 문제는 기강 해이, 복무 부적응 등으로 인한 병력 사고이다. 이 같은 사고를 예방하는 데 있어 가장 중요한 것은, 사고의 요인이 될 수 있는 문제를 사전에 식별 관리하는 것이다. 이를 위해서 지휘관들은 병사들과의 면담, 생활관 순찰, 부모님과의 대화 등 나름대로의 노력을 기울이고 있기는 하지만, 지휘관 개개인의 역량에 따라 사고 징후를 식별하는 데 큰 차이가 나는 것이 현실이다. 본 연구에서는 이러한 문제점을 극복하고자 모든 지휘관들이 쉽게 획득 가능한 객관적 데이터를 활용하여 사고를 예측해 보려 한다. 최근에는 병사들의 생활지도기록부 DB화가 잘 되어있을 뿐 아니라 지휘관들이 병사들과 SNS상에서 소통하며 정보를 얻기 때문에 이를 데이터화 하여 잘 활용한다면 병사들의 사고예측 및 예방이 가능하다고 판단하였다. 본 연구는 이러한 병사의 내부데이터(생활지도기록부) 및 외부데이터(SNS)를 활용하여 그들의 관심분야를 파악하고 사고를 예측, 이를 지휘에 활용하는 데이터마이닝 문제를 다루며, 그 방법으로 토픽분석 및 의사결정나무 방법을 제안한다. 연구는 크게 두 흐름으로 진행하였다. 첫 번째는 병사들의 SNS에서 토픽을 분석하고 이를 독립변수화 하였고 두 번째는 병사들의 내부데이터에 이 토픽분석결과를 독립변수로 추가하여 의사결정나무를 수행하였다. 이 때 종속변수는 병사들의 사고유무이다. 분석결과 사고 예측 정확도가 약 92%로 뛰어난 예측력을 보였다. 본 연구를 기반으로 향후 장병들의 사고예측을 과학적으로 분석, 맞춤식으로 관리한다면 군대 내 각종 사고를 미연에 예방하는데 기여할 것으로 기대된다.

K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로 (Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai)

  • 류미나;임규건
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.197-218
    • /
    • 2019
  • 중국 화장품 전체 교역중 약 67% 정도가 전자상거래로 이루어지고 있는데 특히 한국 화장품인 K-Beauty 제품의 인기가 높다. 기존 연구에 의하면 화장품 같은 소비재의 경우 소비자의 80%는 제품 구매 전 제품정보를 인터넷으로 검색하며 구전정보에 영향을 받는다. 대부분의 중국 소비자들은 화장품과 관련된 정보를 주요 SNS에 다른 소비자들이 올린 댓글을 통해 획득하며 최근에는 뷰티 관련 동영상 채널 정보를 이용하기도 한다. 기존의 온라인 구전 관련 연구는 대부분 Facebook, Twitter, 블로그 등의 매체 자체가 중심이었다. 본 연구에서는 온라인 구전정보의 전달 형태와 정보의 형태를 고려하여 정보유형을 동영상과 사진 및 텍스트로 나누어 연구하고자 한다. 중국의 SNS대표 플랫폼인 SINA Weibo와 동영상 플랫폼 Meipai의 비정형 데이터를 분석하고 온라인 구전정보를 양과 방향성으로 나누어 K-Beauty브랜드 매출액에 미치는 영향을 분석하고자 한다. Meipai에서는 총 약 33만개의 데이터를 수집하였고 SINA Weibo에서는 총 약 11만개의 데이터를 수집하여 화장품의 기본 속성도 고려하여 분석하였다. 본 연구의 의의는 온라인 매출은 K-Beauty화장품에 대해서도 구전에 영향을 받는다는 것을 기본적으로 입증함과 동시에 특히 정보 유형에 대한 구분을 시도 했다는 것이다. 두가지 매체 모두 기존 연구와 같이 양이 매출에 영향을 미치고 있으나 매체풍부성으로 인해 텍스트보다 동영상이 정보를 더 주고 영향이 크다는 것을 입증하였다. 또한, 정보 방향성 측면에서는 색조화장품의 경우 부정 댓글의 영향이 크게 나타났다. 실무적으로는 화장품 판매 전략 및 광고 전략에 기초 및 색조 화장품을 구분하여 중국 K-Beauty화장품 매출증대를 위한 마케팅전략을 구사하는데 도움이 될 것으로 기대된다.