• Title/Summary/Keyword: SMM

Search Result 316, Processing Time 0.017 seconds

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.

QR code as speckle pattern for reinforced concrete beams using digital image correlation

  • Krishna, B. Murali;Tezeswi, T.P.;Kumar, P. Rathish;Gopikrishna, K.;Sivakumar, M.V.N.;Shashi, M.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.67-84
    • /
    • 2019
  • Digital Image Correlation technique (DIC) is a non-contact optical method for rapid structural health monitoring of critical infrastructure. An innovative approach to DIC is presented using QR (Quick Response) code based random speckle pattern. Reinforced Cement Concrete (RCC) beams of size $1800mm{\times}150mm{\times}200mm$ are tested in flexure. DIC is used to extract Moment (M) - Curvature (${\kappa}$) relationships using random speckle patterns and QR code based random speckle patterns. The QR code based random speckle pattern is evaluated for 2D DIC measurements and the QR code speckle pattern performs satisfactorily in comparison with random speckle pattern when considered in the context of serving a dual purpose. Characteristics of QR code based random speckle pattern are quantified and its applicability to DIC is explored. The ultimate moment-curvature values computed from the QR code based random speckled pattern are found to be in good agreement with conventional measurements. QR code encrypts the structural information which enables integration with building information modelling (BIM).

Influence of dynamic loading induced by free fall ball on high-performance concrete slabs with different steel fiber contents

  • Al kulabi, Ahmed K.;Al zahid, Ali A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • One way to provide safe buildings and to protect tenants from the terrorist attacks that have been increasing in the world is to study the behavior of buildings members after being exposed to dynamic loads. Buildings behaviour after being exposed to attacks inspired researchers all around the world to investigate the effect of impact loads on buildings members like slabs and to deeply study the properties of High Performance Concrete. HPC is well-known in its high performance and resistance to dynamic loads when it is compared with normal weight concrete. Therefore, the aim of this paper is finding out the impact of dynamic loads on RPC slabs' flexural capacity, serviceability loads, and failure type. For that purpose and to get answers for these questions, three concrete slabs with 0.5, 1, and 2% steel fiber contents were experimentally tested. The tests results showed that the content of steel fiber plays the key role in specifying the static capacity of concrete slabs after being dynamically loaded, and increasing the content of steel fiber led to improving the static loading capacity, decreased the cracks numbers and widths at the same time, and provided a safer environment for the buildings residents.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

The effects of scour depth and riverbed condition on the natural frequencies of integral abutment bridges

  • Akbari, Reza;Maadani, Saeed;Abedi, Alireza;Maalek, Shahrokh
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.85-101
    • /
    • 2019
  • The effects of foundation scour depth and riverbed condition on the natural frequencies of a typical cross-river integral abutment bridge have been studied. The conventional operational modal analysis technique has been employed in order to extract the modal properties of the bridge and the results have been used in the Finite Element (FE) model updating procedure. Two tests have been carried out in two different levels of water and wet condition of the riverbed. In the first test, the riverbed was in dry condition for two subsequent years and the level of water was 10 meter lower than the natural riverbed. In the second test, the river was opened to water flow from the upstream dam and the level of water was 2 meter higher than the natural riverbed. The results of these two tests have also been used in order to find to what extend the presence of water flow in the river and saturation of the surrounding soil affect the bridge natural frequencies. Finally, the updated FE model of the bridge has been applied in a series of parametric analyses incorporating the effect of piles' relative scour depth on the bridge natural frequency of the first four vibration modes.

The reason of cracking in bottom gallery of SefidRud Buttress Dam and earthquake and post earthquake performance

  • Mirzabozorg, Hasan;Ghaemian, Mohsen;Roohezamin, Amirhossein
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.103-124
    • /
    • 2019
  • Present study concerns the safety evaluation of SefidRud dam's block No. 18 regarding probable crack propagation in the foundation gallery under a MCE record. Accordingly, a 3D finite element model of the block in companion with the reservoir and the foundation is modeled. All the associated thermal and structural parameters are derived via calibration with the records of thermometers and pendulums installed inside the dam body. The origination of the cracks and their whereabouts are determined by primary thermal and static analyses and through a linear dynamic analysis the potential failure zone and their extent and level are studied. The foundation gallery is the most probable zone among the other intensive tensile stress area to compromise the dam stability. Therefore, the nonlinear analysis of this risky region is inevitable. The results depict the permissible expansion of the cracks inside the gallery even under another future earthquake in MCE level. As a consequence, the general dam performance is assessed safe in spite of the seepage flow rate growth from the gallery fractures.

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.

Computer vision monitoring and detection for landslides

  • Chen, Tim;Kuo, C.F.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • There have been a few checking frameworks intended to ensure and improve the nature of their regular habitat. The greater part of these frameworks are constrained in their capacities. In this paper, the insightful checking framework intended for debacle help and administrations has been exhibited. The ideal administrations, necessities and coming about plan proposition have been indicated. This has prompted a framework that depends fundamentally on ecological examination so as to offer consideration and security administrations to give the self-governance of indigenous habitats. In this sense, ecological acknowledgment is considered, where, in light of past work, novel commitments have been made to help include based and PC vision situations. This epic PC vision procedure utilized as notice framework for avalanche identification depends on changes in the normal landscape. The multi-criteria basic leadership strategy is used to incorporate slope data and the level of variety of the highlights. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.