• 제목/요약/키워드: SMD inspection

검색결과 31건 처리시간 0.025초

머신비젼을 이용한 크림솔더상에 장착된 SMD의 검사시스템 개발에 관한 연구 (A Study on the Development of Inspection System of SMD Mounted on Cream Solder Using Machine Vision)

  • 신동원;박경석
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.67-74
    • /
    • 2003
  • This paper presents the development of the Inspection machine for SMD mounted on cream solder of PCB. There are mounting errors of SMD such as misalignment, missing part, wrong orientation, wrong polarity and so on. The main hardware of the system consists of a machine vision part and a motion control part. Operating software has been developed in GUI environment to help user convenience. The Inspection Jobs consist of two procedures, that is, creation of the inspection reference data and automatic inspection. The Inspection reference data has a tree structure of linked list including PCB information, blocks, components, windows, and inspection methods. This paper presents versatile inspection methods which include a section length method, a projection method and histogram method. Therefore, user can choose the suitable procedure for various components. Finally, the automatic Inspection procedure using the reference data checks the mounting errors of components.

  • PDF

SMD의 위치와 방향 계산 및 검사 알고리듬 : 형태학적 방법과 Hough 변환 방법의 비교 (Positioning and Inspection of SMD : Comparison of Morphological Method and Hough Transform Method)

  • 권준식;최종수
    • 전자공학회논문지B
    • /
    • 제32B권1호
    • /
    • pp.73-84
    • /
    • 1995
  • New morphological positioning algorithm and inspection method are presented and compared with a method by means of the Hough transform. The positioning algorithm is the process of finding the center and the rotated angle of the surface mounted device (SMD). The inspection method is capable of detecting the location of broken or bent leads. In order to obtain the center and the orientation of the SMD rapidly, the Hough transform method utilizes feature points (concave points) and is executed on a DSP board. The proposed morphological method is implemented by using the morphological skeleton subsets, and an ultimate orientation is decided by the Hit-or-Miss transform (HMT). In the inspection process, two inspection methods also are presented. The first method utilizes the morphological methods, i.e., opening and closing. It is performed before the positioning process and called an initial inspection. The second method follows the positioning process and is performed by an inspection of intersections of rulers and the lead edge (or the skeleton). It is a ruling technique which is referred to as a detailed inspection. We find the morphological approach is preciser and faster than the Hough approach by the comparison of the proposed algorithms.

  • PDF

훠지형태학을 이용한 SMD의 검색 및 부화소단위 정렬 (Inspection and Subpixel Alignment of SMD's U sing Fuzzy Morphology)

  • 정홍규;박래홍
    • 전자공학회논문지B
    • /
    • 제31B권9호
    • /
    • pp.112-123
    • /
    • 1994
  • In this paper, inspection and subpixed alignment algorithms of SMD's (Surface Mounting Devices) using fuzzy morphology are proposed. First, camera calibration is performed and then the inspection algorithm detects defects such as lead bending and breaking using the ruler generated by fuzy morphology. The SMD having no defects is tested whether it is mounted in the specified position or not. The proposed subpixel alignment algorithm detects accurately orientation and position using subpixel interpolation. It consists of two parts: preprocessing and main processing steps, in which corner points and coarse orientation of a SMD are detected, and interpolation is used to obtain final parameters with wubpixel accuracy. The computer simulation shows that the proposed algorithms give more accurate parameters, and they can be applied to fast and accurate automatic surface mounting systems.

  • PDF

신경회로망을 이용한 SMD 패키지의 자동 분류 (Automatic Classification of SMD Packages using Neural Network)

  • 연승근;이윤애;박태형
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.276-282
    • /
    • 2015
  • This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.

SMD Detection and Classification Using YOLO Network Based on Robust Data Preprocessing and Augmentation Techniques

  • NDAYISHIMIYE, Fabrice;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • 제8권4호
    • /
    • pp.211-220
    • /
    • 2021
  • The process of inspecting SMDs on the PCB boards improves the product quality, performance and reduces frequent issues in this field. However, undesirable scenarios such as assembly failure and device breakdown can occur sometime during the assembly process and result in costly losses and time-consuming. The detection of these components with a model based on deep learning may be effective to reduce some errors during the inspection in the manufacturing process. In this paper, YOLO models were used due to their high speed and good accuracy in classification and target detection. A SMD detection and classification method using YOLO networks based on robust data preprocessing and augmentation techniques to deal with various types of variation such as illumination and geometric changes is proposed. For 9 different components of data provided from a PCB manufacturer company, the experiment results show that YOLOv4 is better with fast detection and classification than YOLOv3.

PCB 납땜 검사를 위한 X선 단층 영상 시스템의 해석 및 설계 (The analysis and design of X-ray cross sectional imaging system for PCB solder joint inspection)

  • 노영준;강성택;김형철;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.109-112
    • /
    • 1996
  • The more integrated and smaller SMD are needed, new solder joints packaging technologies are developed in these days such as BGA(Ball Grid Array), Flip Chip, J-lead etc. But, it's unable to inspect solder joints in those devices by visual inspection methods, because they are hided by it's packages. To inspect those new SMD packages, an X-ray system for acquiring a cross-sectional image of a arbitrary plane is necessary. In this paper, an analysis for designing X-ray cross sectional imaging system is presented including the way for correcting the distortion of image intensifier. And we show computer simulation of that system with a simple PCB model to show it's usefulness in applying PCB solder joint inspection.

  • PDF

자동부품검사를 위한 웨이블렛 변환 기반 영상정합 (Wavelet Transform Based Image Template Matching for Automatic Component Inspection)

  • 조한진;박태형
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.225-230
    • /
    • 2009
  • We propose a template matching method for component inspection of SMD assembly system. To discriminate wrong assembled components, the input image of component is matched with its standard image by template matching algorithm. For a fast inspection system, the calculation time of matching algorithm should be reduced. Since the standard images of all components located in a PCB are stored in computer, it is desirable to reduce the memory size of standard image. We apply the discrete wavelet transformation to reduce the image size as well as the calculation time. Only 7% memory of the BMP image is used to discriminate goodness or badness of components assembly. Comparative results are presented to verify the usefulness of the proposed method.

SMD 및 PCB의 방향과 위치 탐지 (Detection of Orientation and Position of the SMD and PCB)

  • 정홍규;박래홍
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.80-90
    • /
    • 1994
  • In this paper, a high-resolution algorithm for detecting the orientation and position of the SMD and an algorithm for compensating the position and skew angle of the PCB are proposed. The proposed algorithm for the first topic consists of two parts. Its first part is a preprocessing step. in which corner points of the SMD are detected and they are grouped. Then the coarse angle of the principal axis is obtained by line fitting. The second part is a main processing step, in which the fuzzy Hough transform over the limited range of angles is applied to the corner points to detect precisely the orientation of the SMD. The position of the SMD is determined by using its four corner points. The proposed algorithm for the second topic is the one which detects a rotation angle and translation parameters of the PCB using a template matching method. The computer simulation shows that the parametes obtained by proposed algorithms are more precise than those by the several conventional methods considered. The proposed algorithms can be applied to the fast and accurate automatic inspection systems.

  • PDF

SMT에서 정합 및 부품검사 알고리즘의 실시간 처리에 관한 연구 (A Study on The Real-Time Processing of The Position Matching and Inspection Algorithm in SMT)

  • 차국찬;박일수;최종수
    • 전자공학회논문지B
    • /
    • 제29B권1호
    • /
    • pp.76-84
    • /
    • 1992
  • The vision system is essential for SMT(Surface Mounting Technology) automation. The system plays the role of matching the positions betweem SMD and PCB, and inspecting SMD in the final stage of mounting. Real-time processing and high-precision are indispensable for practical purpose. In this paper, a new algorithm for position matching and inspection of SMD is proposed, and which is implemented on the DSP board using DSP board using DSP5600. Experimental results show mean matching error within 0.1 mm in the direction of x,y and execution time within 300msec. Therefore, we could attain high-speed and high-precision of the vision system for SMT automation.

  • PDF