• Title/Summary/Keyword: SMC1A

Search Result 168, Processing Time 0.022 seconds

Finite Element Analysis of Thermally-Induced Deformation in SMC Compression Molding (SMC 압축성형공정에서의 열변형에 관한 유한요소해석)

  • Lee, Jae-Hyoung;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.154-163
    • /
    • 1997
  • Thermally-induced deformation in SMC(Sheet Molding Compound) products is analyzed using three dimensional finite element method. Planar fiber orientation, which causes the anisotropic material properties, is calculated through the flow analysis during the compression stage of the mold. Also curing process is analyzed to predict temperature profile which has significant effects on warpage of SMC products. Through the developed procedure, effects of various process conditions such as charge location, mold temperature, fiber contents, and fiber orientations on deformation of final products are studied. and processing strategies are proposed to reduce the warpage and the shrinkage.

Finite Element Simulation of Material Flow and Weld Line Formation in SMC Compression Molding (SMC 압축성형의 소재유동과 겹침선 형성에 관한 유한요소 해석)

  • Hahn, Young-Won;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 1996
  • SMC(Sheet Molding Compound) is made of unsaturated polyester resin and other additives reinforced with randomly distributed chopped fiberglass strands. Because of its higher stiffness per unit mass, SMC was used as a substitute for steel for automotive steel outer panels. Thus, understanding of flow characteristics during fabrication of SMC is of importance since the formation of weld line depends on material flow. In the present study, SMC compression molding simulations in the flat and T-shape molds were accomplished. During simulations, the preferential the preferential flow occurred at the low mold closing speed while plug flow was observed for the higher mold closing speed. When the preferential flow was observed, the weld line was seen at the final stage. For simulations, rigid-viscoplastic finite element method was applied. Self-contact algorithm was also applied in order to predict the formation of the weld line. Simulation results were compared to the experimental results available in the literature.

An Application of Hilbert-Huang Transform on the Non-Stationary Astronomical Time Series: The Superorbital Modulation of SMC X-1

  • Hu, Chin-Ping;Chou, Yi;Wu, Ming-Chya;Yang, Ting-Chang;Su, Yi-Hao
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2013
  • We present the Hilbert-Huang transform (HHT) analysis on the quasi-periodic modulation of SMC X-1. SMC X-1, consisting of a neutron star and a massive companion, exhibits superorbital modulation with a period varying between ~40 d and ~65 d. We applied the HHT on the light curve observed by the All-Sky Monitor onboard Rossi X-ray Timing Explorer (RXTE) to obtain the instantaneous frequency of the superorbital modulation of SMC X-1. The resultant Hilbert spectrum is consistent with the dynamic power spectrum while it shows more detailed information in both the time and frequency domains. According to the instantaneous frequency, we found a correlation between the superorbital period and the modulation amplitude. Combining the spectral observation made by the Proportional Counter Array onboard RXTE and the superorbital phase derived in the HHT, we performed a superorbital phase-resolved spectral analysis of SMC X-1. An analysis of the spectral parameters versus the orbital phase for different superorbital states revealed that the diversity of $n_H$ has an orbital dependence. Furthermore, we obtained the variation in the eclipse profiles by folding the All Sky Monitor light curve with orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip of Her X-1, can be observed only in the superorbital ascending and descending states, while the width is anti-correlated with the X-ray flux.

Implementation of a Sliding Mode Controller for Single Ended Primary Inductor Converter

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.39-53
    • /
    • 2015
  • This paper presents the regulation of the output voltage and inductor currents in a Single Ended Primary Inductor Converter (SEPIC), operating in the continuous conduction mode (CCM) using a sliding mode controller. Owing to the time varying nature of the SEPIC converter, designing a feedback controller is a challenging task. In order to improve the dynamic performance of the SEPIC, a Sliding Mode Controller (SMC) is developed. The developed SMC is designed by using a state space average model. The performance of the developed controller with the SEPIC converter is validated at different working conditions through Matlab simulations. It is also compared with the performance while using a PI controller. The results show that the designed controller gives very good output voltage regulation under different operating conditions such as a varying input voltage, changes in the load and component variations. A 48V, 46W experimental setup for has been developed in an analog platform to validate the performance of the proposed SMC.

Stability Proof of NFL-FOO/SMC : Part 1 (NFL-FOO/SMC의 안정도 증명 : Part 1)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.973-975
    • /
    • 1998
  • For a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), the separation principle is derived, and the closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Comparative Pixel Characteristics of ELA and SMC poly-Si TETs for the Development of Wide-Area/High-Quality TFT-LCD (대화면/고화질 TFT-LCD 개발을 위하여 ELA 및 SMC로 제작된 다결정 실리콘 박막 트랜지스터의 화소 특성 비교)

    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.72-80
    • /
    • 2001
  • In this paper, we present a systematic method of extracting the input parameters of poly-Si TFT(Thin-Film Transistor) for Spice simulations. This method has been applied to two different types of poly-Si TFTs such as ELA (Excimer Laser Annealing) and SMC (Silicide Mediated Crystallization) with good fitting results to experimental data. Among the Spice circuit simulators, the PSpice has the GUI(graphic user interface) feature making the composition of complicated circuits easier. We added successfully the poly-Si TFT model of AIM-Spice to the PSpice simulator, and analyzed easily to compare the electrical characteristics of pixels without or with the line RC delay. In the comparative results, the ELA poly-Si TFT is superior to the SMC poly-Si TFT in the charging time and the kickback voltage for the TFT-LCD (Thin Film Transistor-Liquid Crystal Display).

  • PDF

Design of New Type Universal Motor Using Soft Magnetic Composites

  • Kim Byung-Taek
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.211-215
    • /
    • 2006
  • This paper presents a new structure for the universal motor using soft magnetic composite (SMC). The stator for this new type of motor is made by combination of the SMC pole and the silicon steel yoke. The shape of the 3D SMC pole is designed to minimize ohmic loss and amount of stator coil. To design the pole shape, the 3D analysis in the design procedure is replaced with an equivalent 2D analysis. Finally, the optimal shape is analyzed by 3D FEM and the performance is discussed.

Posttraumatic Stress Symptoms, Anxiety, and Depression after Stroke (뇌졸중 환자가 경험하는 외상 후 스트레스 증후, 불안 및 우울)

  • Yoon, Hee-Sook;Nam, Hye-Joo;Park, So-Young;Han, Jung-Hee;Jang, Song-Ja;Seong, Il-Soon;Hwang, Moon-Sook
    • Journal of Home Health Care Nursing
    • /
    • v.15 no.1
    • /
    • pp.5-13
    • /
    • 2008
  • Purpose: The purpose of this study was to evaluate for the presence of posttraumatic stress disorder (PTSD)-related symptoms, anxiety, and depression after stroke. Eighty-four patients were enrolled between 2 and 12 months after their first ischemic or hemorrhagic stroke. Methods: PTSD symptoms were evaluated using the Impact of Event Scale (IES). The IES is a 15-item scale measuring intrusion and avoidance symptoms. The authors assessed mood alterations using the Hospital Anxiety and Depression Scale (HAD). The HAD is a brief, 14-item, self-reported questionnaire used to detect symptoms of anxiety (HADA) and depression (HADD). The survey data were analyzed using the SPSS 10.0 program. Frequency, mean, standard deviation, percentage t-test, and Pearson correlation coefficient were determined. Results: Twenty nine of the 84 (34.5%) patients scored higher than the cutoff for PTSD on the IES (IES>26). With use of the HAD scale, 44% of the patients reached the cutoff for anxiety ($HADA\;{\geq}8$). On the HSD scale, 44.1% of the patients reached the cutoff for depression ($HADD\;{\geq}8$). PTSD symptoms and anxiety were more frequent in women under age 39, without spouses, who had operations. Depression was more frequent in patients without spouses. There was a statistically significant correlation among posttraumatic stress symptoms, anxiety, and depression. Conclusion: There was statistically significant correlation among PTSD symptoms, anxiety, and depression in stroke patients. Therefore, it is necessary to develop nursing intervention for stroke patients with these clinical manifestations.

  • PDF

Three-Dimensional Finite Element Analysis of compression Molding of Sheet Molding Compound (SMS 압축성형공정의 3차원 유한요소해석)

  • 김수영;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1995
  • The compression molding of SMC (sheet molding compund) at room temperature was analyzed based on rigid-viscoplastic approach by three dimensional finite element program. The developed program was tested by solving the three dimensional compression of wedge type specimens of aluminum alloys at various processing conditions. The simulation results were compared well to the experimental results available in the literature. based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC, which is a thermosetting material reinforced with chopped fiber glass. To investigate the effects of friction conditions and mold closing speeds for compression molding of SMC charge at room temperature, compressions of the cylindrical and rectangular shaped SMC were analyzed for various friction conditions and mold closing speeds. The calculated load values were compared to the experimental results for the compression molding of cylindrical specimen.

  • PDF

Effect of rainfall events on soil carbon flux in mountain pastures

  • Jeong, Seok-Hee;Eom, Ji-Young;Lee, Jae-ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.302-309
    • /
    • 2017
  • Background: Large-scale land-use change is being caused by various socioeconomic problems. Land-use change is necessarily accompanied by changes in the regional carbon balance in terrestrial ecosystems and affects climate change. Therefore, it is crucial to understand the correlation between environmental factors altered by land-use change and the carbon balance. To address this issue, we studied the characteristics of soil carbon flux and soil moisture content related to rainfall events in mountain pastures converted from deciduous forest in Korea. Results: The average soil moisture contents (SMC) during the study period were 23.1% in the soil respiration (SR) plot and 25.2% in the heterotrophic respiration (HR) plot. The average SMC was increased to 2.1 and 1.1% in the SR and HR plots after rainfall events, respectively. In addition, saturated water content was 29.36% in this grassland. The soil water content was saturated under the consistent rainfall of more than $5mm\;h^{-1}$ rather than short-term heavy rainfall event. The average SR was increased to 28.4% after a rainfall event, but the average HR was decreased to 70. 1%. The correlation between soil carbon flux rates and rainfall was lower than other environmental factors. The correlation between SMC and soil carbon flux rates was low. However, HR exhibited a tendency to be decreased when SMC was 24.5%. In addition, the correlation between soil temperature and respiration rate was significant. Conclusions: In a mountain pasture ecosystem, rainfall induced the important change of soil moisture content related to respiration in soil. SR and HR were very sensitive to change of SMC in soil surface layer about 0-10-cm depth. SR was increased by elevation of SMC due to a rainfall event, and the result was assumed from maintaining moderate soil moisture content for respiration in microorganism and plant root. However, HR was decreased in long-time saturated condition of soil moisture content. Root has obviously contributed to high respiration in heavy rainfall, but it was affected to quick depression in respiration under low rainfall. The difference of SMC due to rainfall event was causative of a highly fluctuated soil respiration rate in the same soil temperature condition. Therefore, rainfall factor or SMC are to be considered in predicting the soil carbon flux of grassland ecosystems for future climate change.