• Title/Summary/Keyword: SMAD3

Search Result 126, Processing Time 0.03 seconds

Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity (간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향)

  • Lee, Ki Su;Hong, Kwon Eui
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

Morphology of Tooth and Smad4 Expression in NFI-C Deficient Mouse (Nuclear Factor I-C 결손생쥐에서 치아의 형태학적 변화와 Smad4의 발현)

  • Bae, Hyun-Sook;Kim, Hye-Mi;Cho, Young-Sik;Park, Su-Jin;Choi, Moon-Sil
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2010
  • Over expression of TGF-${\beta}1$ revealed the same phenotype as NFI-C deficient mouse. It has been reported that NFI-C deficient mice demonstrated abnormal odontoblast differentiation and aberrant dentin formation during root development. In the present study, in order to investigate the histological differences between wild type (WT) mouse and NFI-C deficient mouse, we compared morphological characteristics and smad4 expression between those mice. Hematoxyline-eosin (H-E) staining was used to investigate morphological changes and immunohistochemistry was also performed to observe the Smad4 expression pattern. In H-E staining, incisor of NFI-C deficient mouse showed an open area in the lingual root, irregular odontoblasts and osteodentin. Also, NFI-C deficient mouse showed short root and osteodentin in molar. In addition, Smad4 protein was strongly expressed in NFI-C deficient mouse compared with wild type. These findings suggest that NFI-C deficiency affects odontoblast differentiation and result in the formation of abnormal roots. Therefore, balancing between NFI-C and TGF-${\beta}$ signaling including Smad4 is important for the regulation of normal odontoblast differentiation and dentin formation.

microRNA for determining the age-related myogenic capabilities of skeletal muscle

  • Lee, Kwang-Pyo;Shin, Yeo Jin;Kwon, Ki-Sun
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.595-596
    • /
    • 2015
  • Skeletal muscle exhibits a loss of muscle mass and function with age. Decreased regenerative potential of muscle stem/progenitor cells is a major underlying cause of sarcopenia. We analyzed microRNAs (miRNA) that are differentially expressed in young and old myoblasts, to identify novel intrinsic factors that play a degenerative role in aged skeletal muscle. miR-431, one of decreasing miRNAs in old myoblasts, improved the myogenic differentiation when overexpressed in old myoblast, but suppressed their myogenic capability in knockdowned young myoblasts. We found that miR-431 directly binds to 3` untranslated regions (UTR) of Smad4 mRNA, and decreases its expression. Given that SMAD4 is one of the downstream effectors of TGF-β, a well-known degenerative signaling pathway in myogenesis, the decreased miR-431 in old myoblast causes SMAD4 elevation, thus resulting in defective myogenesis. Exogenous expression of miR-431 greatly improved the muscle regeneration in the cardiotoxin-injured hindlimb muscle of old mice by reducing SMAD4 levels. Since the miR-431 seed sequence is conserved in human SMAD4 3'UTR, miR-431 regulates the myogenic capacity of human skeletal myoblasts in the same manner. Our results suggest that age-associated miR-431 is required for the maintenance of the myogenic capability in myoblasts, thus underscoring its potential as a therapeutic target to slow down muscle aging.

Pine bark extract (Pycnogenol®) suppresses cigarette smoke-induced fibrotic response via transforming growth factor-β1/Smad family member 2/3 signaling

  • Ko, Je-Won;Shin, Na-Rae;Park, Sung-Hyeuk;Kim, Joong-Sun;Cho, Young-Kwon;Kim, Jong-Choon;Shin, In-Sik;Shin, Dong-Ho
    • Laboraroty Animal Research
    • /
    • v.33 no.2
    • /
    • pp.76-83
    • /
    • 2017
  • Chronic obstructive pulmonary diseases (COPD) is an important disease featured as intense inflammation, protease imbalance, and air flow limitation and mainly induced by cigarette smoke (CS). In present study, we explored the effects of $Pycnogenol^{(R)}$ (PYC, pine bark extract) on pulmonary fibrosis caused by CS+lipopolysaccharide (LPS) exposure. Mice were treated with LPS intranasally on day 12 and 26, followed by CS exposure for 1 h/day (8 cigarettes per day) for 4 weeks. One hour before CS exposure, 10 and 20 mg/kg of PYC were administered by oral gavage for 4 weeks. PYC effectively reduced the number of inflammatory cells and proinflammatory mediators caused by CS+LPS exposure in bronchoalveolar lavage fluid. PYC inhibited the collagen deposition on lung tissue caused by CS+LPS exposure, as evidenced by Masson's trichrome stain. Furthermore, transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) expression and Smad family member 2/3 (Smad 2/3) phosphorylation were effectively suppressed by PYC treatment. PYC markedly reduced the collagen deposition caused by CS+LPS exposure, which was closely involved in $TGF-{\beta}1$/Smad 2/3 signaling, which is associated with pulmonary fibrotic change. These findings suggest that treatment with PYC could be a therapeutic strategy for controlling COPD progression.

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

Smad-dependent Expression of Gadd45b Gene during TGF-β-induced Apoptosis in EpH4 Cells. (EpH4 세포에서 TGF-β에 의한 세포사멸시 Smad 단백질에 의존한 Gadd45b 유전자의 발현 변화)

  • Cho, Hee-Jun;Yoo, Ji-Yun
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.461-466
    • /
    • 2008
  • Transforming growth $factor-{\beta}$ ($TGF-{\beta}$)-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. Gadd45b has been known to participate in $TGF-{\beta}-induced$ apoptosis by the activation of p38 kinase. In this report, we show that Gadd45b is an immediate-early response gene for $TGF-{\beta}$ during apoptosis in EpH4 cells. To elucidate the molecular mechanism of $TGF-{\beta}-induced$ Gadd45b gene expression, we cloned the 5'-flanking region of the mouse Gadd45b gene. When transfected into EpH4 cells, this 5'-flanking region conferred promoter activity and inducibility by $TGF-{\beta}$. Deletion analyses demonstrated that the minimal promoter activity was detected in the proximal region 220 bp upstream of the transcription initiation site. We also found that the proximal Gadd45b promoter is activated by $TGF-{\beta}$ through the action of Smad2, Smad3, and Smad4. Finally, we show that the expression of Gadd45b gene by $TGF-{\beta}$ is suppressed in EpRas cells in which $TGF-{\beta}$ could not induce apoptosis, suggesting that Gadd45b may be a crucial target for $TGF-{\beta}-induced$ apoptosis in EpH4 cells.

Effect of Fractions From Stachys sieboldii Miq. Root on Antioxidant, Anti-inflammation and Smad Signaling (초석잠 뿌리 분획물의 항산화 및 항염증 효과와 smad 신호 전달에 미치는 효과)

  • Jung Woo Lee;Myungwon Choi;Sun Young Lim
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.245-253
    • /
    • 2024
  • We investigated to analyze total flavonoid content and fatty acid composition of Stachys sieboldii Miq root. In order to determine antioxidant and anti-inflammatory effects of fractions from S. sieboldii Miq. root, we conducted 1.1-Diphenyl-2-picryhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS) assays for antioxidant and measured nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW 264.7 cells. In addition, we examined an inhibitory effect of fractions from S. sieboldii Miq. root on smad signaling induced by transforming growth factor (TGF) β. Among the fractions, n-butanol (n-BuOH) fraction showed the highest flavonoid content (16.67 mg/g), followed by n-Hexane, water and 85% aqueous methanol (85% aq. MeOH) fractions. The fatty acid composition of S. sieboldii Miq. root was in the following order : n-6 fatty acids (54.3%) > n-3 fatty acids (21.2%) > saturated fatty acids (19.7%) > n-9 fatty acids (3.6%). As a result of the antioxidant efficacy, the DPPH and ABTS assays showed that n-BuOH fraction had higher scavenging activity compared to other fractions. Inhibitory effect on NO production showed that all fractions decreased LPS-induced NO production, indicating an anti-inflammatory activity of S. sieboldii Miq. root. 85% aq. MeOH and water fractions showed a higher efficacy in inhibiting transforming growth factor (TGF) β induced smad signaling. From the results, it suggests that food processing products using S. sieboldii Miq. root will be developed as a functional food for promoting health.

The Signaling Mechanism of TGF-β1 Induced Bovine Mammary Epithelial Cell Apoptosis

  • Di, He-Shuang;Wang, Li-Gang;Wang, Gen-Lin;Zhou, Lei;Yang, Yuan-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.304-310
    • /
    • 2012
  • The present study showed that Transforming growth factor beta 1 (TGF-${\beta}_1$) can induce apoptosis of bovine mammary epithelial cells. This apoptosis was also observed with phosphorylation of Smad2/3 within 0.5-2 h. Afterwards the signal transferred into the nucleus. Moreover, intracellular free $Ca^{2+}$ concentration was significantly elevated as well as Caspase-3 activated and DNA lysised, thereby inducing the programmed cell death. This signaling pathway of TGF-${\beta}_1$ was blocked by SB-431542 ($10^{-2}{\mu}M$) via inhibiting ALK-5 kinase activity, which thus reversed the anti-proliferation and apoptosis effect of TGF-${\beta}_1$ in mammary epithelial cells. These results indicated that TGF-${\beta}_1$ induced apoptosis of bovine mammary epithelial cells through the ALK-5-Smad2/3 pathway, which plays an important role in inhibiting survival of mammary epithelial cells. Moreover, intracellular $Ca^{2+}$ also played a critical role in TGF-${\beta}_1$-induced cell apoptosis.

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.

The Effect of Chungganhaeju-tang on $TGF-{\beta}1-induced$ Hepatic Fibrosis (청간해주탕(淸肝解酒湯)이 $TGF-{\beta}1$ 유도성 간섬유화에 미치는 영향)

  • Lee, Ji-Hyeon;Kim, Young-Chul;Woo, Hong-Jung;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.93-106
    • /
    • 2005
  • Objectives : The aim of this study is to characterize the effect of Chungganhaeju-tang on $TGF-{\beta}l$-induced hepatic fibrosis. Materials and Methods : mRNA and protein expression levels of $TGF-{\beta}l$ in Chungganhaeju-tang treated HepG2 cells were compared to untreated cells using quantitative RT-PCR and ELISA assay, respectively. mRNA expression levels of the $TGF-{\beta}l$ signaling pathway genes $(T{\beta}R-I,\;T{\beta}R-II,\;Smad2,\;Smad3,\;Smad4,\;and\;PAI-1)$ and fibrosis-associated genes (CTGF, fibronectin, and collagen type $l{\alpha}$) were evaluated by quantitative RT-PCR. The effect of Chungganhaeju-tang on cell proliferation of T3891 human fibroblast was evaluated using $[^3H]Thymidine$ Incorporation Assay. Results : Inhibition of $TGF-{\beta}l$ mRNA expression and protein production was observed with treatment of Chungganhaeju-tang and seen to be dose and time dependent. Whereas $TGF-{\beta}l$-mediated induction of PAI-1 was suppressed with treatment of Chungganhaeju-tang, expression of the $TGF-{\beta}l$ signaling pathway genes such as $T{\beta}R-I$, $T{\beta}R-II$, Smad2, Smad3, and Smad4 was not affected. With treatment of Chungganhaeju-tang, inhibition of $TGF-{\beta}l$-induced cell proliferation of T3891 human fibroblast was observed, as well as abrogation of $TGF-{\beta}l$-mediated transcriptional up-regulation of CTGF, fibronectin, and collagen type $I{\alpha}$. Conclusion : This study strongly suggests that the liver cirrhosis-suppressive activity of Chungganhaeju-tang may be derived at least in part from its inhibitory effect on $TGF-{\beta}l$ functions, such as blockade of $TGF-{\beta}l$ stimulation of fibroblast cell proliferation and fibrosis-related gene expression as well as expression of $TGF-{\beta}l$ itself.

  • PDF