• 제목/요약/키워드: SMAD2

검색결과 149건 처리시간 0.021초

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

둥근성게(Strongylocentrotus nudus)의 Smad3와 Estrogen Receptor-related $Receptor\;{\beta}$ like 1 유전자 발현 (Gene Expression of Smad3 and Estrogen Receptor-related $Receptor\;{\beta}$ like 1 in Sea Urchin, Strongylocentrotus nudus)

  • 정유정;손영창
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권1호
    • /
    • pp.43-47
    • /
    • 2007
  • Transforming growth $factor-{\beta}(TGF-{\beta})$ 신호의 매개자 역할을 하는 Smad 계열 단백질은 발생과정에 중요한 역할을 한다고 알려져 있다. Estrogen receptor(ER)와 구조적으로 유사한 estrogen receptor-related receptor(ERR)은 포유동물에서 후기 배발생기에 외배엽 형성과 관련이 되어 있는 고아핵수용체이다. 본 연구에서는 해양무척추동물의 초기발생과정과 계절번식기 동안에 Smad3와 ERR의 유전자 발현이 발생과정과 성숙에 어떠한 연관성을 갖고 있는지 알아보기 위하여, 동해안 연안에 주로 서식하는 극피동물문 둥근성게과 둥근성게(Strongylocentrotus nudus)를 재료로 하여 계절별 및 배발생 과정중에 Smad3와 $ERR{\beta}$ like 1의 mRNA 농도를 real-time PCR 방법으로 조사하였다. Smad3 mRNA는 샘플링을 시작한 2004년 2월의 생식소와 비교하면 4월부터 그 농도가 증가하기 시작하여 6월까지 증가하였으며, 산란기인 8월에 감소하였다가 10월부터 12월까지 높은 수준을 유지하였다. $ERR{\beta}$ like 1 mRNA는 6월까지 낮은 수준이었으나, 산란기인 8월에 급증한 후 다시 감소하였다. 수정란부터 초기 유생기까지 발생과정을 분석한 결과, Smad3 mRNA는 8세포기 및 16세포기에 높은 발현이 관측되었다. 한편, $ERR{\beta}$ like 1 mRNA는 포배기, 낭배기, 초기 유생기에 현저하게 높은 발현패턴을 보였다. 이상의 결과로부터 둥근성게의 산란기 및 발생배의 발생후기에 $ERR{\beta}$ like 1이 중요한 역할을 담당할 것으로 추정되며, 초기 난할시기에는 Smad3의 관련성이 시사되었다.

  • PDF

간성상세포에서 상엽(桑葉) 추출물의 섬유화 억제 효과 (Anti-fibrotic Effect of Mori Folium Extract in Hepatic Stellate Cells)

  • 변성희;박상미;김상찬;조일제
    • 대한본초학회지
    • /
    • 제28권4호
    • /
    • pp.49-55
    • /
    • 2013
  • Objectives : Mori Folium was popularly used as one of the traditional medicinal herbs. Although M. Folium has been cultivated for rearing silkworm historically, it's use has been expanded as natural therapeutic agent for the treatment of filariasis, diabetes and dropsy in East Asia. However, little has been known about the effect of M. Folium on liver fibrosis. Therefore, we would like to explore an anti-fibrogenic potential of M. Folium extract (MFE) using immortalized human hepatic stellate cell line, LX-2 cells. Methods : We examined the effects of MFE on the transforming growth factor ${\beta}1$ ($TGF{\beta}1$)-induced liver fibrosis in LX-2 cells. Cell viability, Smad binding element-driven luciferase activity, phosphorylations level of Smad 2/3, and expression level of $TGF{\beta}1$-dependent target genes were monitored in the MFE-treated LX-2 cells. Results : Up to 30 ${\mu}g/ml$ MFE treatment did not show any possible toxic effect in LX-2 cells. MFE inhibited $TGF{\beta}1$-inducible Smad binding element-driven luciferase activity and decreased the $TGF{\beta}1$-inducible phosphorylations of Smad 2 and Smad 3 in hepatic stellate cell in a dose dependent manner. Furthermore, increases of plasminogen activator inhibitor type 1, $TGF{\beta}1$ and matrix metalloproteinases 2 genes by $TGF{\beta}1$ were also attenuated by MFE treatment. Conclusions : These findings suggested that MFE would be used as a potential therapeutic agent for the treatment liver fibrosis, which might be mediated by the inhibition of $TGF{\beta}1$-inducible Smad 2/3 transactivation and target genes expression.

마황(麻黃) 열수 추출물의 TGF-β/Smad 경로 억제를 통한 간섬유화 억제효능 (Ephedra has anti-fibrogenic effects by inhibiting the TGF-β/Smad pathway in LX-2 cells)

  • 유재현;박상미;정대화;김상찬
    • 대한한의학방제학회지
    • /
    • 제32권2호
    • /
    • pp.141-153
    • /
    • 2024
  • Objective : Ephedrae Herba (Ephedra) has been frequently used in the East Asian traditional medicine including Korea, China and Japan in the clinical treatment of asthma, cold and influenza etc. This study was performed to explore an anti-fibrogenic potential of Ephedra Herba water extract (EHE) using immortalized human hepatic stellate cell line, LX-2 cells. Methods : We examined the anti-fibrogenic effects of EHE on canonical pathway of transforming growth factor-β1 (TGF-β1) signaling in LX-2 cells. Cell viability was measured using the MTT assay. mRNA levels were detected by real-time PCR. Proteins expression were detected by Western blot. Results : Treatment of EHE 30 ㎍/ml did not show any cytotoxicity on LX-2 cells. Pre-treatment of EHE (30 ㎍/mL) significantly inhibited α-smooth muscle actin expression induced by TGF-β1. Additionally, EHE significantly decreased Smad2 and Smad3 phosphorylations, Smad binding element-driven luciferase activity and plasminogen activator inhibitor type 1 expression by TGF-β1. Furthermore, increases of matrix metalloproteinases 2 genes by TGF-β1 was also attenuated by EHE treatment. Conclusion : These results suggest that EHE has an ability to suppress fibrogenic process in activated HSC via inhibition of TGF-β1-TGFBR mediated canonical (Smad dependent) pathway.

The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1

  • Lee, Sang Hoon;Shin, Ju Hye;Shin, Mi Hwa;Kim, Young Sam;Chung, Kyung Soo;Song, Joo Han;Kim, Song Yee;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • 제82권1호
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Transforming growth factor ${\beta}$ (TGF-${\beta}$), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-${\beta}1$. Methods: A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-${\beta}1$ and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-${\beta}1$ and Smad3 were evaluated at 1 and 3 weeks. Results: When A549 cells were pre-stimulated with TGF-${\beta}1$ prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-${\beta}1$ stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-${\beta}1$ failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-${\beta}1$-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-${\beta}1$ and Smad3 at 1 and 3 weeks. Conclusion: RA had inhibitory effects on the phosphorylation of Smad induced by TGF-${\beta}1$ in vitro, and RA also decreased the expression of TGF-${\beta}1$ at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-${\beta}1$/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-${\beta}1$-induced lung injury and fibrosis.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

인진청간탕이 $TGF-{\beta}1$ 매개성 간섬유화에 미치는 영향 (Effects of Injinchunggan-tang (Yinchenqinggan-tang) on $TGF-{\beta}1-Mediated$ Hepatic Fibrosis)

  • 심재옥;김영철;이장훈;우홍정
    • 대한한의학회지
    • /
    • 제24권2호
    • /
    • pp.1-11
    • /
    • 2003
  • Objectives : The aim of this study was to characterize the effect of Injinchunggan-tang on $TGF-{\beta}1-induced$ hepatic fibrosis. Methods : mRNA and protein expression levels of $TGF-{\beta}1$ in Injinchunggan-tang-treated HepG2 cells were compared to untreated cells using quantitative RT-PCR and ELISA assay, respectively. mRNA expression levels of the TGF-1 pathway genes (TR-1, TR-II, Smad2, Smad3, Smad4, and PAI-1) and fibrosis-associated genes (CTGF, fibronectin, and collagen type 1) were evaluated by quantitative RT-PCR. The effect of Injinchunggan-tang on cell proliferation of T3891 human fibroblast was evaluated using [$^3H$]thymidine incorporation assay. Results : Expression of $TGF-{\beta}1$ mRNA and protein was inhibited by Injinchunggan-tang in a dose- and time-dependent manner. Whereas $TGF-{\beta}1-mediated$ induction of PAI-1 was suppressed by Injinchunggan-tang, expression of the $TGF-{\beta}1$ pathway genes such as TR-1, TR-II, Smad2, Smad3, and Smad4 was not affected by Injinchunggan-tang treatment. Injinchunggan-tang was found to inhibit $TGF-{\beta}1-induced$ cell proliferation of T3891 human fibroblast, and also abrogated $TGF-{\beta}1-mediated$ transcriptional up-regulation of CTGF, fibronectin, and collagen type I. Conclusions : This study strongly suggests that the liver cirrhosis-suppressive activity of Injinchunggan-tang may be derived at least in part from its inhibitory effect on $TGF-{\beta}1$ functions, such as blockade of $TGF-{\beta}1$ stimulation of fibroblast cell proliferation and fibrosis-related gene expression as well as expression of $TGF-{\beta}1$ itself.

  • PDF

간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향 (Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity)

  • 이기수;홍권의
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

Opposing Effects of Arkadia and Smurf on TGFβ1-induced IgA Isotype Expression

  • Choi, Seo-Hyun;Seo, Goo-Young;Nam, Eun-Hee;Jeon, Seong-Hyun;Kim, Hyun-A;Park, Jae-Bong;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.283-287
    • /
    • 2007
  • $TGF-{\beta}1$ induces Ig germ-line ${\alpha}$ ($GL{\alpha}$) transcription and subsequent class switching recombination (CSR) to IgA. In the present study, we investigated the roles of two E3-ubiquitin ligases, Smurfs (HECT type) and Arkadia (RING finger type) on $TGF{\beta}1$-induced IgA CSR. We found that over-expression of Smurf1 and Smurf2 decreased $TGF{\beta}1$-induced $GL{\alpha}$ promoter activity and strengthened the inhibitory effect of Smad7 on the promoter activity. Further, over-expression of Smurf1 and Smurf2 decreased both Smad3/4-mediated and Runx3-mediated $GL{\alpha}$ promoter activities, suggesting that the Smurfs can down-regulate the major $TGF-{\beta}1$ signaling pathway and decrease $GL{\alpha}$ gene expression. In parallel, the over-expressed Smurf1 decreased the expression of endogenous IgA CSR-predictive transcripts ($GLT_{\alpha}$, $PST_{\alpha}$, and $CT_{\alpha}$) and also $TGF{\beta}1$-induced IgA secretion. Conversely over-expression of Arkadia abolished the inhibitory effect of Smad7 on $TGF{\beta}1$-induced $GLT_{\alpha}$ expression and IgA secretion. Similar results were obtained in the presence of over-expressed Smad7 and Smurf1. These results indicate that Arkadia can amplify $TGF{\beta}1$-induced IgA CSR by degrading Smad7, which interacts with Smurf1. We conclude that Smurf and Arkadia have opposite roles in the regulation of $TGF{\beta}1$-induced IgA isotype expression.