• Title/Summary/Keyword: SLNR (Signal-to-Leakage plus Noise Ratio)

Search Result 6, Processing Time 0.02 seconds

SLNR-Based Precoder Design for Multiuser MIMO in Distributed Antenna Systems (분산 안테나 시스템에서 다중 사용자 MIMO를 위한 SLNR 기반의 프리코더 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.75-82
    • /
    • 2018
  • In this paper, we consider a precoder design for downlink multiuser multiple-input multiple-output (MU-MIMO) in distributed antenna systems (DAS). In DAS, remote radio heads (RRHs) are placed at geographically different locations within a cell area. Three different precoder design schemes are proposed to maximize the separate or joint signal-to-leakage-plus-noise ratio (SLNR) metrics by considering RRH sum power or per-RRH power constraints. The analytical closed-form form solution for each optimization problem is presented. Through computer simulation, we show that the joint SLNR based precoding schemes have better signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER) performances than the separate SLNR based schemes. Also, it is shown that the precoding scheme with RRH sum power constraint has better performance than the precoding scheme with per-RRH power constraint.

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.

Joint Transceiver Design for SWIPT in MIMO Interference Channel (MIMO 간섭채널에서 정보와 전력의 동시 전송 (SWIPT)을 위한 송수신기 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.55-62
    • /
    • 2019
  • In this paper, we consider K-user multiple-input multiple-output (MIMO) interference channel and present a transceiver design for simultaneous wireless information and power transfer (SWIPT) systems. In addition, we consider a SWIPT system where an information decoding receiver and an energy harvesting receiver are co-located at the same receiver. In the proposed scheme, signal-to-leakage plus noise ratio (SLNR) is used as a cost function and a transceiver is designed to satisfy the threshold of the harvested energy. More specifically, transmitter precoding vector, receiver filter vector, and power spitting factor are simultaneously designed to maximize SLNR with a constraint on the harvested energy. Through computer simulation, we compare the signal-to-interference plus noise ratio (SINR) performance of the proposed and conventional schemes. When a special condition among the number of transmit antennas, receive antennas, and users is satisfied, the proposed scheme showed better SINR performance than the conventional scheme at low signal-to-noise ratio (SNR) range. Also, when the condition is not satisfied, the proposed scheme showed better performance than the conventional scheme at all SNR range.

Beamforming for Downlink Multiuser MIMO Time-Varying Channels Based on Generalized Eigenvector Perturbation

  • Yu, Heejung;Lee, Sok-Kyu
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.869-878
    • /
    • 2012
  • A beam design method based on signal-to-leakage-plus-noise ratio (SLNR) has been recently proposed as an effective scheme for multiuser multiple-input multiple-output downlink channels. It is shown that its solution, which maximizes the SLNR at a transmitter, can be simply obtained by the generalized eigenvectors corresponding to the dominant generalized eigenvalues of a pair of covariance matrices of a desired signal and interference leakage plus noise. Under time-varying channels, however, generalized eigendecomposition is required at each time step to design the optimal beam, and its level of complexity is too high to implement in practical systems. To overcome this problem, a predictive beam design method updating the beams according to channel variation is proposed. To this end, the perturbed generalized eigenvectors, which can be obtained by a perturbation theory without any iteration, are used. The performance of the method in terms of SLNR is analyzed and verified using numerical results.

Client Collaboration for Power and Interference Reduction in Wireless Cellular Communication

  • Nam, Hyungju;Jung, Minchae;Hwang, Kyuho;Choi, Sooyong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 2012
  • A client collaboration (CC) system is proposed for a user relay system. The proposed scheme focuses on the management of transmit power and leakage interference. In the proposed CC system, edge users transmit signals to the masters considered as user relays. The masters relay the signals of the edge users to the base station using the resource blocks (RBs) that are assigned to the edge users. The leakage interference and power consumption were analyzed in the CC system. In addition, an optimal master location problem was formulated based on the signal-to-leakage-plus-noise ratio (SLNR). Because the optimal master location problem is quite complex, a sub-optimal master location problem was proposed and a closed-form sub-optimal master location was obtained. The edge users generate smaller leakage interference and power consumption in the proposed CC system compared to the system without the CC. The numerical results showed that the edge users generate smaller leakage interference and power consumption in the proposed CC system compared to the system without the CC, and the average throughput increases.

  • PDF

Simple Precoding Scheme Considering Physical Layer Security in Multi-user MISO Interference Channel (다중 사용자 MISO 간섭 채널에서 물리 계층 보안을 고려한 간단한 프리코딩 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2019
  • In this paper, we propose a simple precoding vector design scheme for multi-user multiple-input single-output (MISO) interference channel when there are multiple eavesdroppers. We aim to obtain a mathematical closed-form solution of the secrecy rate optimization problem. For this goal, we design the precoding vector based on the signal-to-leakage plus noise ratio (SLNR). More specifically, the proposed precoding vector is designed to completely eliminate a wiretap channel capacity for refraining the eavesdroppers from detecting the transmitted information, and to maximize the transmitter-receiver link achievable rate. We performed simulation for the performance investigation. Simulation results show that the proposed scheme has better secrecy rate than the conventional scheme over all signal-to-noise ratio (SNR) range even though the special condition among the numbers of transmit antennas, transmitter-receiver links, and eavesdroppers is not satisfied.