• Title/Summary/Keyword: SIQR boxplot and Cook's distance

Search Result 1, Processing Time 0.016 seconds

Outlier Detection and Treatment for the Conversion of Chemical Oxygen Demand to Total Organic Carbon (화학적산소요구량의 총유기탄소 변환을 위한 이상자료의 탐지와 처리)

  • Cho, Beom Jun;Cho, Hong Yeon;Kim, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 2014
  • Total organic carbon (TOC) is an important indicator used as an direct biological index in the research field of the marine carbon cycle. It is possible to produce the sufficient TOC estimation data by using the Chemical Oxygen Demand(COD) data because the available TOC data is relatively poor than the COD data. The outlier detection and treatment (removal) should be carried out reasonably and objectively because the equation for a COD-TOC conversion is directly affected the TOC estimation. In this study, it aims to suggest the optimal regression model using the available salinity, COD, and TOC data observed in the Korean coastal zone. The optimal regression model is selected by the comparison and analysis on the changes of data numbers before and after removal, variation coefficients and root mean square (RMS) error of the diverse detection methods of the outlier and influential observations. According to research result, it is shown that a diagnostic case combining SIQR (Semi - Inter-Quartile Range) boxplot and Cook's distance method is most suitable for the outlier detection. The optimal regression function is estimated as the TOC(mg/L) = $0.44{\cdot}COD(mg/L)+1.53$, then determination coefficient is showed a value of 0.47 and RMS error is 0.85 mg/L. The RMS error and the variation coefficients of the leverage values are greatly reduced to the 31% and 80% of the value before the outlier removal condition. The method suggested in this study can provide more appropriate regression curve because the excessive impacts of the outlier frequently included in the COD and TOC monitoring data is removed.