• Title/Summary/Keyword: SIMPLEC algorithm

Search Result 26, Processing Time 0.02 seconds

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

Validation of a CFD Analysis Model for the Calculation of CANDU6 Moderator Temperature Distribution (CANDU6 감속재 온도분포 계산을 위한 CFD 해석모델의 타당성 검토)

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.499-504
    • /
    • 2001
  • A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory(SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard $k-\varepsilon$ turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than $2.0^{\circ}C$ over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well.

  • PDF

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.