• 제목/요약/키워드: SIMPLE법

검색결과 2건 처리시간 0.013초

수치해를 이용한 선박의 점성저항 해석 (Visous resistance analysis of a ship using numerical solutions)

  • 곽영기
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.100-106
    • /
    • 1997
  • Viscous flow around an actual ship is calculated by an use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stress is modelled by using k-$\varepsilon$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the complex boundary of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implcit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the disssssssscretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). The subject ship model of actual calculation is 4,410 TEU class container carrier. For 4 geosim models the calculated viscous resistancce values are compared with the model test results and analyzed on their componentss. The resistance performance of an actual ship is predicted very resonably, so this mothod may be utilized as a design tool of hull form.

  • PDF

HSVA 두 탱커 선형에 대한 점성유동 계산 (Numerical Calculation of Viscous Flows for Two HSVA Tankers)

  • 곽영기
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.138-146
    • /
    • 1999
  • The viscous flow around a ship hull is calculated by the use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stresses are midelled by using the k-${epsilon}$ turbulence model and the law is applied near the body. Body fitted corrdinates are introduced for the treatment of the complex boundary of the ship hull form and the governing equations in the physical domain transformed into ones in the computational domain. The transformed equations are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implicit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the sidcretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). To assure the proprietty of this computing method, HSVA tanker and Dyne hull are calculated ar both model and ship scale Reynolds number. Their reaults of pressure distributions on fore and aft body, axial velocity contours and transverse velocity velocity vectors and viscous resistance coefficients are compared with other's experiments and calculations.

  • PDF