• 제목/요약/키워드: SIFT keypoints

검색결과 22건 처리시간 0.021초

SIFT를 이용한 위성사진의 정합기법 (A Scheme for Matching Satellite Images Using SIFT)

  • 강석천;황인택;최광남
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-23
    • /
    • 2009
  • 본 논문에서 우리는 위성 영상에 대하여 객체를 지역화한 접근을 제안한다. 우리의 방법은 서술 벡터에 기반한 특징 정합 방법이다. 객체를 지역화하는 방법은 SIFT(Scale Invariant Feature Transform)를 적용시킨다. 먼저, 위성영상의 키포인트를 찾고, 키포인트의 서술 벡터를 일반화한다. 그리고 서술 벡터간에 유사성을 측정하여 키포인트를 매칭시킨다. 마지막으로, 키포인트의 인접 픽셀값에 가중치를 주어 객체에서 위치를 결정한다. SIFT를 이용한 이 실험은 다양한 스케일과 어파인 변환에 대해 좋은 결과를 산출하였다. 본 논문에서 제안된 방법은 구글 어스의 위성영상을 사용하였다.

  • PDF

SIFT 특징을 이용한 의료 영상의 회전 영역 보정 (Correction of Rotated Region in Medical Images Using SIFT Features)

  • 김지홍;장익훈
    • 한국멀티미디어학회논문지
    • /
    • 제18권1호
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.

스케일 공간 고차 미분의 정규화를 통한 특징점 검출 기법 (Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives)

  • 박종승;박운상
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.93-96
    • /
    • 2015
  • 이미지 검색 및 매칭에 사용되는 SIFT 기법은 다양한 이미지 변화 요인들에 대하여 강인한 특성을 가지고 있는 것으로 알려져 있다. SIFT 기법은 기존의 픽셀 단위의 변화량에 의존한 특징점 추출 방식을 확장하여 스케일 공간에서의 변화량 분석을 통한 특징점 추출 방식을 제시하였으며, 이렇게 추출된 특징점들의 강인함은 그 동안 여러 실험을 통하여 입증되었다. 또한, 최근에는 스케일 공간 변화량 분석에 있어서 기존의 SIFT 기법을 확장하여 고차 미분 계수를 이용한 특징점 추출 방법도 소개되었다. 본 논문에서는 이러한 스케일 공간의 고차 미분에서의 정규화를 통한 보다 강인한 특징점 추출 기법을 소개하고 이러한 특징점들의 강인함을 이미지 검색 실험을 통하여 입증한다.

영상 스티칭 관점에서 SIFT 특징점 추출시간 감소를 위한 파라미터 분석 (Parameter Analysis for Time Reduction in Extracting SIFT Keypoints in the Aspect of Image Stitching)

  • 문원준;서영호;김동욱
    • 방송공학회논문지
    • /
    • 제23권4호
    • /
    • pp.559-573
    • /
    • 2018
  • 최근 가상현실(VR, Virtual Reality) 등 가장 많은 분야에서 가장 활발히 응용되고 있는 영상매체 중 하나가 전방위 영상 또는 파노라마 영상이다. 이 영상은 다양한 방법으로 획득된 영상들을 스티칭하여 생성하는데, 그 과정에서 스티칭에 필요한 특징점들을 추출하는데 가장 많은 시간이 소요된다. 이에 본 논문은 현재 가장 널리 사용되고 있는 SIFT 특징점을 추출하는 연산시간을 감소하는 것에 목적을 두고 SIFT 특징점들을 추출에 관여하는 파라미터들을 분석한다. 본 논문에서 고려하는 파라미터는 가우시안 필터링에 사용되는 가우시안 커널의 초기 표준편차, 국소극점을 추출하기 위한 가우시안 차영상군의 수, 그리고 옥타브 수의 세 가지이다. SIFT 알고리즘으로는 이 알고리즘을 제안한 Lowe 방식과 컨볼루션 캐스캐이드(convolution cascade) 방식인 Hess 방식을 고려한다. 먼저 각 파라미터 값이 연산시간에 미치는 영향을 분석하고, 실제 스티칭 실험을 수행하여 각 파라미터가 스티칭 성능에 미치는 영향을 분석한다. 마지막으로 두 분석결과를 토대로 성능저하 없이 연산시간을 최소로 하는 파라미터 값들을 추출한다.

SIFT-Grid를 사용한 향상된 얼굴 인식 방법 (An Improved Face Recognition Method Using SIFT-Grid)

  • 김성훈;김형호;이현수
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.299-307
    • /
    • 2013
  • 본 논문은 SIFT-Grid 기반의 얼굴 인식 시스템에서 식별 능력의 향상과 계산량 감소를 목적으로 한다. 첫번째는 한 얼굴 클래스의 다양한 훈련 이미지로부터 비슷한 SIFT 특징점들은 제거하고, 상이한 특징점들은 병합하는 통합템플릿의 구성 방법을 제안한다. 통합템플릿은 SIFT-Grid를 통해 나누어진 훈련 이미지들의 동일 부분영역 내의 특징점들에 대한 유사도 행렬의 계산과 임계치 기반의 히스토그램의 계산을 통해 구성하였다. 두 번째는 구성된 통합템플릿들로부터 테스트 이미지의 효과적인 식별을 위한 유사도 계산 방법을 제안한다. 유사도의 계산은 테스트 이미지와 각 클래스의 통합템플릿간의 일대일 비교로 수행된다. 이때 동일 부분영역 별로 유사도 점수와 임계치 기반의 보팅 점수가 계산된다. 얼굴 인식 작업에 대한 실험 결과 제안된 방법이 SIFT-Grid 기반의 다른 두 방법보다 정확한 것으로 확인 되었고, 또한 계산량도 감소하였다.

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • 제12권4호
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

원격 탐사 영상 정합을 위한 딥러닝 기반 특징점 필터링 (Deep Learning-based Keypoint Filtering for Remote Sensing Image Registration)

  • 성준영;이우주;오승준
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.26-38
    • /
    • 2021
  • 본 논문에서는 원격 탐사 영상에 대한 특징 기반 영상 정합 (Image Registration) 방법의 고속화를 위한 딥러닝 기반 특징점 필터링 방법인 DLKF (Deep Learning Keypoint Filtering)를 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. DLKF는 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 구조물의 경계와 인접한 특징점을 보존하고, 서브 샘플링 (Subsampling)된 영상을 사용한다. 또한 영상 분할 (Image Segmentation) 방법을 위해 패치 단위로 잘라낸 영상을 다시 합칠 때 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라낸다. DLKF의 성능을 검증하기 위하여 아리랑 3호 위성 원격 탐사 영상을 사용하여 기존 특징점 검출 방법과 속도와 정확도를 비교하였다. SIFT 기반 정합 방법을 기준으로 SURF 기반 정합 방법은 특징점의 수를 약 18% 감소시키고 속도를 약 2.6배 향상시켰지만 정확도가 3.42에서 5.43으로 저하되었다. 제안하는 방법인 DLKF를 사용하였을 때 특징점의 수를 약 82% 감소시키고 속도를 약 20.5배 향상시키면서 정확도는 4.51로 저하되었다.

SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석 (Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design)

  • 박찬일;이수현;정용진
    • 대한전자공학회논문지SD
    • /
    • 제45권6호
    • /
    • pp.49-59
    • /
    • 2008
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 고정 소수점 모델로 설계 및 분석하고 그에 근거한 하드웨어 구조를 제안한다. SIFT 알고리즘은 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 구역에서 얻어진 특징점 주위 픽셀의 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 알고리즘에 대한 최적의 하드웨어 구현을 위해 특징점 위치(Keypoint Localization)와 방향(Orient Assignment)에 대한 정확도, 오차율을 사용하여 고정 소수점 모델에서 각 중요 변수들의 비트 크기를 결정 한다. 얻어진 고정 소수점 모델은 원래의 부동 소수점 모델과 비교했을 때 정확도 93.57%, 오차율 2.72%의 결과를 보이며, 고정 소수점 모델은 부동 소수점 모델과 비교하여 제거된 특징점의 대부분이 두 영상에서 추출된 특징점 끼리의 매칭과정에서 불필요한 객체의 모서리 영역에 몰려있음을 확인했다. 고정 소수점 모델링 결과 ARM 400MHz 환경에서 약 3시간, Pentium Core2Duo 2.13GHz 환경에서 약 15초의 연산시간을 갖는 부동 소수점 모델이 동일한 환경에서 약 1시간과 10초의 연산시간을 가지며, 최적화된 고정 소수점 모델을 하드웨어로 구현 시 $10{\sim}15\;frame/sec$의 성능을 보일 것으로 예상한다.

특징점간의 벡터 유사도 정합을 이용한 손가락 관절문 인증 (Finger-Knuckle-Print Verification Using Vector Similarity Matching of Keypoints)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1057-1066
    • /
    • 2013
  • 손가락 관절문(FKP, finger-knuckle-print)을 이용한 개인 인증은 손가락 관절부에 나타나는 주름의 특징을 이용하는 것으로, 텍스처의 방향 정보가 중요한 특징이 된다. 본 논문에서는 SIFT 알고리즘을 이용하여 특징점들을 추출하고, 벡터 유사도 정합을 통해 FKP를 효과적으로 인증할 수 있는 방법을 제안하다. 벡터는 질의 영상에서 추출한 특징점과 이에 대응되는 참조 영상의 특징점을 연결하는 방향 벡터로 정의된다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 벡터 자체는 국소적인 특징만을 나타내지만, 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교함으로써 전역적인 특징으로 확장되는 장점이 있다. 실험결과 제안하는 방법은 기존의 방향코드를 이용한 다양한 방식에 비하여 우수한 성능을 나타내었다.