• Title/Summary/Keyword: SIFT Feature Matching

Search Result 101, Processing Time 0.021 seconds

Action recognition by SIFT and particle feature trajectories (SIFT와 Particle 특징 궤적 기반 행동인식)

  • Yu, Jeong-Min;Yang, E-hwa;Jeon, Moon-Gu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.201-203
    • /
    • 2013
  • 본 논문에서는 SIFT 와 particle 특징 궤적을 이용한 새로운 행동 인식 시스템을 제안한다. 먼저, 영상에서 중요한 지역적 특징 정보를 얻기 위하여 SIFT 특징 점들을 탐지하고, 탐지한 특징 점들을 SIFT descriptor matching 기법을 이용하여 그 궤적을 추출한다. 또한, SIFT 특징 궤적들의 수량이 적은점과 영상내의 조명변화, 부분적 가려짐 등의 변화로 인해 SIFT 특징 궤적이 종종 없어지는 단점을 보완하기 위하여, SIFT 특징 궤적 주위에 particle 점들을 탐지하고, dense optical flow 기법을 기반으로 그 특징 궤적을 추출한다. 그리고 SIFT 와 particle 궤적의 중요도를 조절하기 위해 가중치를 부여한다. 제안한 행동 인식 시스템의 효율성을 범용 데이터 셋을 이용한 실험을 통해 증명하였다.

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.

Comparison of Image Matching Method for Automatic Matching of High Resolution SAR Imagery (SAR 영상 자동정합을 위한 영상정합기법의 비교연구)

  • Baek, Sang Ho;Hong, Seung Hwan;Yoo, Su Hong;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1639-1644
    • /
    • 2014
  • SAR satellite can acquire clear imagery regardless of weather and the images are widely used for land management, natural hazard monitoring and many other applications. Automatic image matching technique is necessary for management of a huge amount of SAR data. Nevertheless, it is difficult to assure the accuracy of image matching due to the difference of image-capturing attitude and time. In this paper, we compared performances of MI method, FMT method and SIFT method by applying arbitrary displacement and rotation to TerraSAR-X images and changing resolution of the images. As a result, when the features having specific intensity were distributed well in SAR imagery, MI method could assure 0~2 pixels accuracy even if the images were captured in different geometry. But the accuracy of FMT method was significantly poor for the images having different spatial resolutions and the error was represented by tens or hundreds pixels. Moreover, the ratio of corresponding matching points for SIFT method was only 0~17% and it was difficult for SIFT method to apply to SAR images captured in different geometry.

Correction of Mt. Baekdu DEM Generated from SPOT-5 Stereo Images (SPOT-5 스테레오 영상을 이용한 백두산 DEM 제작과 보정)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Uk;Oh, Jae-Hong;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.555-560
    • /
    • 2010
  • The geoscientists are very interested in a volcanic reactivity of Mt. Baekdu. Periodical observation and monitoring are thus needed to detect the topographic and environmental changes of Mt. Baekdu. It is, however, very restrictive to survey with difficulty of observer's accessibility in the field due to political problems. This study therefore is to produce digital elevation model (DEM) of Mt. Baekdu using SPOT-5 stereo images. The produced DEM is very not accurate because of using without ground control points (GCP). To correct the previously generated DEM, scale-invariant feature transform(SIFT) matching method is adopted with shuttle radar topography mission(SRTM) DEM of NASA Jet Propulsion Laboratory(JPL). The results of the produced DEM to SRTM DEM matching indicate that the corrected DEM from SPOT-5 stereo images has more detail topographic structures. In addition, difference of spatial distances between the corrected DEM and SRTM DEM are much smaller than non-corrected DEM.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

Classification of Feature Points Required for Multi-Frame Based Building Recognition (멀티 프레임 기반 건물 인식에 필요한 특징점 분류)

  • Park, Si-young;An, Ha-eun;Lee, Gyu-cheol;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.317-327
    • /
    • 2016
  • The extraction of significant feature points from a video is directly associated with the suggested method's function. In particular, the occlusion regions in trees or people, or feature points extracted from the background and not from objects such as the sky or mountains are insignificant and can become the cause of undermined matching or recognition function. This paper classifies the feature points required for building recognition by using multi-frames in order to improve the recognition function(algorithm). First, through SIFT(scale invariant feature transform), the primary feature points are extracted and the mismatching feature points are removed. To categorize the feature points in occlusion regions, RANSAC(random sample consensus) is applied. Since the classified feature points were acquired through the matching method, for one feature point there are multiple descriptors and therefore a process that compiles all of them is also suggested. Experiments have verified that the suggested method is competent in its algorithm.

Filtering Feature Mismatches using Multiple Descriptors (다중 기술자를 이용한 잘못된 특징점 정합 제거)

  • Kim, Jae-Young;Jun, Heesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Feature matching using image descriptors is robust method used recently. However, mismatches occur in 3D transformed images, illumination-changed images and repetitive-pattern images. In this paper, we observe that there are a lot of mismatches in the images which have repetitive patterns. We analyze it and propose a method to eliminate these mismatches. MDMF(Multiple Descriptors-based Mismatch Filtering) eliminates mismatches by using descriptors of nearest several features of one specific feature point. In experiments, for geometrical transformation like scale, rotation, affine, we compare the match ratio among SIFT, ASIFT and MDMF, and we show that MDMF can eliminate mismatches successfully.

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.