• 제목/요약/키워드: SIFT알고리즘

검색결과 125건 처리시간 0.027초

드 브루인 수열을 이용한 효과적인 위치 인식 마커 구성 (Effective Marker Placement Method By De Bruijn Sequence for Corresponding Points Matching)

  • 박경미;김성환;조환규
    • 한국콘텐츠학회논문지
    • /
    • 제12권6호
    • /
    • pp.9-20
    • /
    • 2012
  • 컴퓨터비전에서 안정적으로 대응점을 획득하는 것은 매우 중요한 일이다. 그러나 이들은 스케일, 조명, 시점 등이 변하는 환경에서 정확한 대응점을 찾는 과정은 쉽지 않다. SIFT 알고리즘은 객체의 모서리나 꼭지점으로부터 추출한 특징벡터를 사용하므로 스케일링, 회전, 조명변화를 가지는 영상에서도 뛰어난 매칭을 수행한다. 그러나 SIFT는 엣지에 의해 특징점을 추출하므로 엣지가 존재하지 않는 영역에서는 원하는 대응점을 찾을 수 없다. 본 연구는 SIFT에 의한 대응 특징점 추출과 매칭 성능을 향상시키기 위한 마커 모양 및 배치 방법을 제안한다. 제안 방법에서 사용한 마커의 모양은 부착 방향에 따라 SIFT 알고리즘에 의해 한 방향으로 우세한 벡터를 검출할 수 있는 반원형(SemiCircle)으로 구성한다. 그리고 대응점 매칭의 성능을 향상시키기 위하여 마커의 방향 배치는 드 브루인 수열(De Bruijn Sequence)을 이용한다. 실험을 통해 제안한 방법이 기존의 방법보다 더 정확한 특징점 검출과 매칭에 효과적임을 증명하였다.

특징점 Appearance Model Space를 이용한 3차원 물체 인식 (3D Object Recognition Using Appearance Model Space of Feature Point)

  • 주성문;이칠우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권2호
    • /
    • pp.93-100
    • /
    • 2014
  • 카메라의 시선 방향에 따라 다른 영상을 생성하는 3차원 물체를 2차원 영상만으로 인식하는 것은 어려운 일이다. 특히 영상 생성 시 강한 투영변환(perspective transformation) 이 발생할 경우 투영된 물체의 이미지에 대한 국소 특징을 정의하는 SIFT(Scale-Invariant Feature Transform) 알고리즘은 물체 인식에 한계가 있다. 본 논문에서는 3차원 물체를 하나의 특정 축을 중심으로 회전시키면서 얻은 복수의 영상을 학습 데이터로 활용한 물체인식 방법을 제안한다. 이 방법을 이용하여 복수 영상의 특징 점들을 하나의 특징 공간으로 합성하고 영상들 간의 기하학적인 관계를 이용하여 중복된 영역을 제거한 모델을 생성하면 임의의 3차원 회전이 적용된 물체를 인식할 수 있다. 실험에서는 알고리즘의 유용성을 먼저 확인하기 위해 조명조건과 카메라의 위치를 일정하게 유지하였다. 이 방법에 의해 SIFT 알고리즘만으로 인식이 힘들었던 3차원 물체의 다양한 외관(appearance) 인식이 가능하게 되었다.

SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭 (Stitcing for Panorama based on SURF and Multi-band Blending)

  • 라연;신성식;박현주;권오봉
    • 한국멀티미디어학회논문지
    • /
    • 제14권2호
    • /
    • pp.201-209
    • /
    • 2011
  • 이 논문은 이미지 매칭 알고리즘의 일종인 수정된 SURF(Speeded Up Robust Feature)와 이미지 블렌딩 알고리즘의 일종인 멀티밴드 블렌딩으로 구성된 파노라마 이미지 스티칭 시스템을 제안한다. 이 논문은 처음에 수정된 SURF를 기술하고 SIFT(Scale Invariant Feature Transform)와 비교하여 SURF를 이 시스템에서 채택한 이유에 대하여 논한다. 그리고 멀티밴드 블렌딩에 대하여 기술하고, 이어서 제안된 파노라마 이미지 스티칭 시스템의 구조에 대하여 설명하고 마지막으로 이미지 질과 처리시간에 대한 평가를 한다. 평가결과는 제안된 시스템이 개별 이미지들을 이음매 없이 연결하였으며, 많은 개개의 이미지 데이터에 대해서도 완전한 파노라마 이미지를 생성하였으며 처리 시간도 SIFT보다 빨랐다.

SIFT를 이용한 장면전환 검출 및 필터링 기술 (Scene Change Detection and Filtering Technology Using SIFT)

  • 문원준;유인재;이재청;서영호;김동욱
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.939-947
    • /
    • 2019
  • 미디어 시장의 활성화로 영상의 압축, 검색, 편집, 저작권 보호등의 필요성이 높아지고 있다. 본 논문에서는 이 모든 분야에 사용되는 영상의 장면 전환을 검출하는 방법을 제안한다. 유통 과정에서 발생 가능한 해상도 변환, 자막 삽입, 압축, 영상 반전등의 변형이 추가되더라도 동일하게 장면 전환을 검출하기 위해 전처리 과정과 SIFT를 이용한 특징점 추출, 변형을 고려한 매칭 알고리즘을 제시한다. 또한 이를 필터링 기술에 적용하여 알고리즘에서 고려한 변형 이외의 변형에도 유효함을 확인한다.

SIFT 기술자를 이용한 얼굴 표정인식 (Facial Expression Recognition Using SIFT Descriptor)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.89-94
    • /
    • 2016
  • 본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.

PCA-SIFT의 차원 중복점을 이용한 이미지 기반 이미지 검색 시스템 (Image-based Image Retrieval System Using Duplicated Point of PCA-SIFT)

  • 최기룡;정혜욱;이지형
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.275-279
    • /
    • 2013
  • 최근 멀티미디어 정보가 보편화됨에 따라 인터넷에서 이미지를 기반으로 정보를 검색하려는 다양한 시도가 진행되고 있다. 그러나 이미지에는 다양한 패턴이 포함되어 있기 때문에 정확하게 원하는 이미지를 찾는 것은 아직 어려움이 많다. 본 논문에서는 인터넷 쇼핑몰의 상품검색을 효율적으로 할 수 있는 이미지 기반 검색 시스템을 제안한다. 제안된 검색 방법은 SIFT(Scale Invariant Feature Transform) 알고리즘을 이용하여 이미지 검색을 위한 특징을 추출하고, PCA-SIFT를 이용하여 여러 차원에서 키포인트의 매칭을 반복하여 누적 후 사용자가 원하는 상품을 찾아준다. 제안된 방법의 효율성을 검증하기 위해, 다양한 패턴의 상품 이미지를 이용하여 기존 SIFT, PCA-SIFT 방법과 제안된 방법을 비교한 결과, 상표가 포함되지 않은 이미지의 경우 제안방법이 가장 높은 변별력을 보였으며, 효과적인 이미지 검색의 가능성을 보였다.

SIFT 와 SURF 알고리즘의 성능적 비교 분석 (Comparative Analysis of the Performance of SIFT and SURF)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

SIFT 특징점을 이용한 4채널 서라운드 시스템의 동적 영상 정합 알고리즘 (Dynamic Stitching Algorithm for 4-channel Surround View System using SIFT Features)

  • 국중진;강대웅
    • 반도체디스플레이기술학회지
    • /
    • 제23권1호
    • /
    • pp.56-60
    • /
    • 2024
  • In this paper, we propose a SIFT feature-based dynamic stitching algorithm for image calibration and correction of a 360-degree surround view system. The existing surround view system requires a lot of processing time and money because in the process of image calibration and correction. The traditional marker patterns are placed around the vehicle and correction is performed manually. Therefore, in this study, images captured with four fisheye cameras mounted on the surround view system were distorted and then matched with the same feature points in adjacent images through SIFT-based feature point extraction to enable image stitching without a fixed marker pattern.

  • PDF

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

고해상도 광학영상과 SAR 영상 간 정합 기법 (Registration Method between High Resolution Optical and SAR Images)

  • 전형주;김용일
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.739-747
    • /
    • 2018
  • 다중센서 위성영상 간 통합 분석 및 융합과 관련된 연구가 활발히 진행되고 있다. 이를 위해서는 다중센서 영상 간 정합이 선행되어야 한다. 대표적인 정합 기법으로는 SIFT (Scale Invariant Feature Transform)와 같은 알고리즘이 존재한다. 그러나, 광학영상과 SAR (Synthetic Aperture Radar)영상은 취득 시 센서 자세와 방사 특성의 상이함으로 영상 간 분광적인 특성이 비선형성을 이뤄 기존 기법을 적용하기에 어렵다. 이를 해결하기 위해, 본 연구에서는 특징기반 정합기법인 SAR-SIFT (Scale Invariant Feature Transform)와 형상 서술자 벡터 DLSS (Dense Local Self-Similarity)를 결합하여 개선된 영상 정합기법을 제안하였다. 본 실험 지역은 대전 일대에서 촬영된 KOMPSAT-2 영상과 Cosmo-SkyMed 영상을 이용하여 실험하였다. 제안 기법을 비교평가하기 위해 특징점 및 정합쌍 추출에 대해 대표적인 기존 기법인 SIFT와 SAR-SIFT를 이용하였다. 실험 결과를 통해 제안 기법은 기존 기법들과 다르게 두 실험 지역에서 참정합쌍을 추출하였다. 또한 추출된 정합쌍을 통한 정합 결과 정성적으로 우수하게 정합되었으며, 정량적으로도 두 실험 지역에서 각각 RMSE (Root Mean Square Error) 1.66 m, 2.65 m로 우수한 정합 결과를 보였다.