• Title/Summary/Keyword: SI Engine

Search Result 370, Processing Time 0.032 seconds

Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine (PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF

A Study on Performance Characteristics of a Small-Sized Hydrogen-Fuelled Two-Stroke Engine (수소 연료를 적용한 소형 2행정 엔진 성능 특성에 관한 연구)

  • Kim, Yongrae;Kim, Seonyoeb;Oh, Sechul;Park, Cheolwoong;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.28-33
    • /
    • 2020
  • In this study the possibility of hydrogen as a fuel in a small-sized two-stroke SI (Spark ignition) engine was investigated. For this purpose, experimental setup including an engine, a dynamometer, equipments for hydrogen and lubricant oil supply was prepared. And then preliminary experiments for the hydrogen-fueled engine combustion were conducted. In the case of hydrogen-fueled engines comparing to gasoline backfire occurs when the excess air ratio is lower than a specific value. This can cause engine power reduction and damage to the engine parts. The engine was controlled to operate at lean conditions to prevent backfire. Through the control of excess air ratio, the maximum engine brake power output of 3 kW was achieved in a 210 cc engine, while it was 6 kW in case of gasoline fuel.

Effects of Warm-up Performance on SI Engine with Exhaust Heat Recovery System (배기열 회수장치 적용에 따른 SI 엔진의 웜업 성능에 미치는 영향)

  • Park, Kyoun-Suk;Suh, Ho-Cheol;Park, Sun-Hong;Kim, In-Tae;Jang, Sung-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.53-60
    • /
    • 2011
  • The effect of exhaust heat recovery system can be evaluated by two well known method. First method is to measure the time duration from engine start under cold coolant temperature till coolant get warmed. By this methodology coolant warming duration can be index of warm-up effect. Second method is to analyze heat balance of the engine during warm-up phase under steady engine operation so that wasted energy by losses such as cooling and exhaust can be index of warm-up effect. This study focused on evaluation of warming-up effect by both methodology above mentioned using 2L SI engine under from idle to 2000rpm steady condition. Results, idle operation showed low heat recovery efficiency but under higher engine speed condition, remarkable heat recovery efficiency improvement was observed. In 2000rpm steady condition, warm-up duration of engine is decreased by exhaust heat recovery system.

Study on the Modeling of the Intake and Exhaust Systems of an SI Engine Using GT-POWER (GT-POWER를 이용한 SI 기관 흡·배기 계통의 모델링에 관한 연구)

  • Kim, Jeong-Seok;Yoon, Keon-Sik;Woo, Seok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.779-785
    • /
    • 2011
  • Prediction of the transient pressure variations and performance parameters has been carried out for an SI engine using one of commercial software, GT-POWER. Various models were applied for the calculation of properties of the plenum chamber, exhaust manifold and catalytic convertor which are very important components included in the intake and exhaust systems.

The Frictional Modes of Piston Rings for an SI Engine (SI 엔진 피스톤-링의 마찰모드)

  • 조성우;최상민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.114-120
    • /
    • 2000
  • Friction forces of piston rings for a typical SI engine were independently measured while excluding the effects of cylinder pressure, oil starvation and piston secondary motion using a floating liner system. Friction patterns, represented by the measured friction forces, were classified into five frictional modes with regard to the combination of predominant lubrication regimes(boundary, mixed and hydrodynamic lubrication) and stroke regions(mid-stroke and dead centers). The modes were identified on the Stribeck diagram of the dimensionless bearing parameter and friction coefficients which were evaluated at the mid-stroke and at the dead centers. And the frictional modes were estimated to the full operation range. The compression rings behave in the mode where hydrodynamic lubrication is dominant at the mid-stroke and mixed lubrication is dominant at the dead centers under steady operating conditions. However, the oil control ring behave in the mode where mixed lubrication is dominant throughout the entire stroke.

  • PDF

Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique (레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화)

  • Cho, Hoon;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

Analytical Approach on Intake fort Development of SI Engines Based on Correlations of Design Parameters and Flow Coefficients (가솔린엔진의 흡기유량계수와 포트설계인자의 상관성에 관한 연구)

  • Lee, Si-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.121-129
    • /
    • 2006
  • An Intake Port of SI engines plays a key role on improving engine performance by maximizing full load volumetric efficiency or by optimizing in-cylinder air motion. However, designing an intake port has been usually performed based on port experts' experience and know-how, which means that analytical analyses are relatively insufficient. In this paper, port design parameters which decide an overall port shape were defined in order to correlate them relevantly with flow test results accumulated so far. Test species were composed of all twenty eight SI engines which cover major engine displacements from 1,000cc to 4,000cc. First, they were tested on a steady state flow test rig to find out their flow coefficients. Secondly, those flow coefficients were analyzed based on the port design parameters measured from the engines. The most effective parameters were port height, valve head diameter, and the ratio of port size and cylinder bore diameter. The final correlation equation could predict flow coefficients within 2% deviation.

Effect of Engine Specification and Driving Conditions on the Idle Emission Characteristics of SI Vehicles (Sl 자동차의 아이들 운전시 엔진 및 운행 조건에 따른 배출 가스 특성)

  • 류재욱;송정훈;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.70-76
    • /
    • 2002
  • This study focus on the effect of engine specification, driving conditions and the vehicle type on the idle emission characteristics. In order to obtain the characteristics of exhaust emissions, 1,260 vehicles of spark ignition engine are sampled and investigated. The exhaust emissions are measured with a CO/HC emission gas analyzer. The Sl engine vehicles are investigated by the effect of various exhaust emission parameters such as vehicle milage, engine specification, valve trains and fuels. The results show that the amount of CO and HC emission is not directly related to the driving mileage of the vehicle. However, the engine specifications and fuels such as the type of valve train and piston displacement have influence on the exhaust emissions. In addition, the LPG vehicle emits more CO and HC than gasoline vehicle. Based on the test results of SI vehicles, the influence of excess air and displacement volume are discussed.

A Study on Combustion and Emission Characteristics of the Methanol Blended Fuel in SI Engine (SI엔진의 메탄올 혼합 연료의 연소 및 배출 가스 특성에 관한 연구)

  • 조행묵;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • The engine performance and combustion characteristics of methanol blended fuel in a multiple-point electronic control gasoline engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blended ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of blended fuel brought on the improvement of emission characteristics such as THC, CO, and NOx concentration. The effect of methanol blended fuel on the fuel consumption rate and the other characteristics of performance were discussed.

Indicated and Load Torque Estimation of SI-Engine using Cylinder Pressure Sensor (실린더 압력센서를 사용한 가솔린 엔진의 도시토크와 부하토크의 추정)

  • 백종탁;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-6
    • /
    • 2003
  • The torque is an important measure that represents the performance of a particular engine. Furthermore the information of engine torque can be used as a primary feedback parameter in modem engine management system. In this paper, a methodology is proposed for torque estimation of SI-engine. Since the proposed method uses cylinder pressure sensor, the torque can be estimated in a simple manner. The indicated torque is estimated from the peak pressure and its location, and the load torque is observed by the state observer based on the estimated indicated torque. The proposed method is accurate and robust against the variations that affect the torque production such as spark timing, mass air flow and others. This torque estimation method may be an alternative solution to the use of engine torque maps in a modem torque-based engine management system.