• Title/Summary/Keyword: SHEL model

Search Result 8, Processing Time 0.03 seconds

A study on maritime casualty investigations combining the SHEL and Hybrid model methods

  • Lee, Young-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.721-725
    • /
    • 2016
  • This paper reviews the analysis of a given scenario according to the Hybrid Model, and why accident causation models are necessary in casualty investigations. The given scenario has been analyzed according to the Hybrid Model using its main five components, fallible decisions, line management, psychological precursors to unsafe acts, unsafe acts, and inadequate defenses. In addition, the differences between the SHEL and the Hybrid Model, and the importance of a safety barrier during an accident investigation, are shown in this paper. One unit of SHEL can be linked with another unit of SHEL. However, it cannot be used for the analysis of an accident. Therefore, we must use an accident causation model, which can be a Hybrid Model. This can explain the "How" and "Why" of accident, so it is a suitable model for analyzing them. During an accident investigation, the reason we focus on a safety barrier is to create another safety barrier or to change an existing safety barrier if that barrier fails. Hence, the paper shows how a sea accident can be investigated, and we propose a preventive way of avoiding the accident through combining the methods of different models for the future.

Analysis of Factors Behind Human Error in Fatal Construction Accidents using the m-SHEL Model (m-SHEL 모델에 의한 건설 중대 사고재해의 휴먼에러 배후 요인 분석)

  • An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.415-423
    • /
    • 2022
  • As human factors are the most important cause of construction accidents, it is important to reduce human error in construction work to reduce accidents. However, the error forcing context in organizational situations acts as a factor behind human error. Therefore, fatal construction accidents were analyzed using the m-SHEL model, which can identify the factors behind human errors. Through such analysis, it was found that there are differences in the detailed factors behind human errors according to the type of fatal accidents in construction, This study is meaningful in that it confirmed through accident cases that it is important to understand and respond to organizational situations in order to reduce human error in construction work.

Analysis of Human Factors Behind Maritime Traffic-Related Accidents Using the m-SHEL Model (m-SHEL 모델에 의한 해상교통 관련 사고의 배후 인적 요인 분석에 관한 연구)

  • Keum, Jong-Soo;Yoon, Dae-Gwun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.511-518
    • /
    • 2018
  • Research indicates, about 80% of maritime accidents are caused by human error. Further investigation of the human factors behind maritime casualties is essential in order to establish preventive measures. The main purpose of this study is to identify and analyze human factors behind maritime traffic-related accidents using the m-SHEL model. Since the m-SHEL model used in other fields is based on generic human factors, it has expanded in this study to accommodate ship operating systems and define human factors. In addition, the validity of the expanded model was verified by reliability analysis using SPSSWIN. A classified table for this extended m-SHEL model was then used to analyze human factors behind maritime traffic-related accidents extracted from a written verdict by the Korean Maritime Safety Tribunal. Human factors were arranged in the order L, L-E, L-H, L-m, L-L, and L-S. This paper contributes to the prevention of maritime traffic-related accidents caused by human factors by presenting useful analytical results that can be applied to build a maritime safety management system.

Analysis of the IMO's Role for Safe Maritime Transport System

  • Kim, Inchul;An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.266-273
    • /
    • 2015
  • Keeping in mind that there are only limited social, economic and administrative resources for reducing marine casualties, the result of statistical survey showed the loopholes of safe maritime transport system, and rendered that most casualties occurred in coastal waters by human errors. When the IMO Marine Casualty Investigation Code was utilized to reveal any structural vulnerability of the international measures, IMO was required to expand its roles to enhance the interface between Liveware and Environment of SHEL model. So, several risk assessment models were studied and found that Maritime Safety Audit System of the Republic of Korea could be a good example of enhancing safe interface between navigators (Liveware) and the navigational circumstances (Environment). It could be dealt with at IMO level as a tool for applying at human error enforcing waters. International cooperative research for upgrading risk assessment modes should also be future terms of reference.

A Study of SHEL Model Application to Passenger Brace Position Information of Korean Air Carriers (우리나라 항공사의 승객 충격방지 자세 정보에 대한 SHEL모델 적용 연구)

  • Yoo, Kyung In;Kim, Mu Geun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.125-132
    • /
    • 2015
  • 항공기 추락 시 충돌충격단계에서 사상자가 가장 많이 발생하는 것으로 나타나고 있다. 대부분의 경우, 승객들은 두부손상으로 의식을 잃게 되어 비상탈출에 실패하여 사망에 이르게 된다. 이에 대한 대응책으로 항공기 제작사들은 내구성이 강화된 항공기 좌석을 설계 및 제작하여 설치하고 있다. 객실에서는 승객들이 충격방지자세를 취함으로써 부상을 최소화할 수 있다. 승객들에 대한 충격방지자세 안내는 모든 항공사가 시간적 여유가 있는 비상상황에서만 객실승무원이 안내방송과 함께 시범을 보이도록 절차가 수립되어 있다. 그러나 갑작스런 사고의 경우 승객들은 충격방지자세에 대한 정보를 전달받지 못한 상태에서 사상의 위험에 직면하게 된다. 본 논문은 SHEL 모델을 적용하여 승객과 사상자발생 환경, 승객과 충격방지를 위한 안전절차, 승객과 승객안전정보 전달매체, 승객과 객실승무원등의 상호작용에 내재된 위해요소를 체계적으로 규명하고 객실안전에 대한 법규 및 절차 등의 개정을 제시함으써, 항공기사고로 인한 사상자 발생에 대한 근본적인 대안을 제시하여 항공안전 증진에 기여하고자 한다.

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

Development of a Human Factors Investigation and Analysis Model for Use in Maritime Accidents: A Case Study of Collision Accident Investigation

  • Kim, Hong-Tae;Na, Seong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.303-318
    • /
    • 2017
  • In the shipping industry, it is well known that around 80 % or more of all marine accidents are caused fully or at least in part by human error. In this regard, the International Maritime Organization (IMO) stated that the study of human factors would be important for improving maritime safety. Consequently, the IMO adopted the Casualty Investigation Code, including guidelines to assist investigators in the implementation of the Code, to prevent similar accidents occurring again in the future. In this paper, a process of the human factors investigation is proposed to provide investigators with a guide for determining the occurrence sequence of marine accidents, to identify and classify human error-inducing underlying factors, and to develop safety actions that can manage the risk of marine accidents. Also, an application of these investigation procedures to a collision accident is provided as a case study This is done to verify the applicability of the proposed human factors investigation procedures. The proposed human factors investigation process provides a systematic approach and consists of 3 steps: 'Step 1: collect data & determine occurrence sequence' using the SHEL model and the cognitive process model; 'Step 2: identify and classify underlying human factors' using the Maritime-Human Factor Analysis and Classification System (M-HFACS) model; and 'Step 3: develop safety actions,' using the causal chains. The case study shows that the proposed human factors investigation process is capable of identifying the underlying factors and indeveloping safety actions to prevent similar accidents from occurring.