• Title/Summary/Keyword: SH-wave

Search Result 100, Processing Time 0.022 seconds

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography (표면파 토모그래피를 이용한 사우디아라비아의 S파 속도구조 및 이방성 연구)

  • Kim, Rinhui;Chang, Sung-Joon;Mai, Martin;Zahran, Hani
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.

Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects (재료내 다중결함에 의한 SH형 초음파 산란장의 수치해석)

  • Lee, Joon-Hyun;Lee, Seo-Il;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.304-312
    • /
    • 1998
  • In order to assure the reliability and integrity of structures such as bridges, Power and petrochemical plants, nondestructive evaluation techniques are recently playing more important roles. Among the various kinds of nondestructive evaluation techniques, ultrasonic technique is one of the most widely used methods for nondestructive inspection of internal defects in structures. For the reliable quantitative evaluation of internal defects from the experimental ultrasonic signals, a numerical analysis of ultrasonic scattering field due to a defect distribution is absolutely required. In this paper, the SH-wave scattering by multi-cavity defects using elastodynamic boundary element method is studied. The effects of shape of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in 50-wave scattering is also investigated. Numerical calculation by the boundary element method has been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results would be useful to improve the sensitivity of flaw defection for inverse analysis and pursue quantitative nondestructive evaluation for inverse problem.

  • PDF

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Logging for Diametric Variation of Granular Compaction Pile Using Crosshole Seismic Tests (크로스홀 탄성파 시험을 이용한 쇄석다짐말뚝의 시공직경 검측)

  • Park, Chul-Soo;Jung, Jae-Woo;Kim, Hak-Sung;Kim, Eun-Jung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1415-1426
    • /
    • 2008
  • Stone columns, locally called "GCP (granular compaction pile)" can be used to improve strength and resistance against lateral movement of a foundation soil like rigid piles and piers. Also installation of such a discrete column facilitates drainage, and densifies and reinforces the soil in the sense of ground improvement. The integrity of the GCP has been indirectly controlled with the records of each batch including depth and the quantity of stone filled. An integrity testing was attempted using crosshole S-wave logging. The method is conceptionally same as the crosshole sonic logging (CSL) for drilled piers. The only and critical difference is that S-wave should be used in the logging, because P-wave velocity of the stone column is less than that of ground water. The crosshole sonic logger does not have the capability to measure S-wave propagating through the skeleton of crushed stone. An electro-mechanical source, which can generate either P- or SH-waves, and a 1-D geophone were used to measure SH-waves. Two 76mm diameter cased boreholes were installed 1 meter apart across the nominal 700mm diameter stone column. At every 10cm of depth, shear wave was measured across the stone column. One more borehole was also installed 1 meter outward from the one of the above boreholes to measure the shear wave profile of the surrounding soil. The diametric variation of the stone column with respect to depth was evaluated from the shear wave arrival times across the stone column, and shear wave velocities of crushed stone and surrounding soil. The volume calculated with these variational diameters is very close to the actual quantity of the stone filled.

  • PDF

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

A Study on Evaluation of Thermal Shock Damage of Metal Matrix Composite using Ultrasonics (초음파를 이용한 금속복합재료의 열충격 손상 평가 연구)

  • 강문필;이준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.31-37
    • /
    • 2000
  • Metal matrix composites(MMCs) are rapidly becoming one of the strongest candidates for structural materials for many high temperature application. Among the high temperature environment, thermal shock is known to cause significant degradation in most MMC system. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonic surface and SH-waves. For this study, Sic fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 25~$400^{\circ}C$ up to 1000 cycles. Three point bend test was conducted to investigate the effect of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the change of ultrasonic velocity and attenuation were discussed by considering SEM observation of fracture surface.

  • PDF

SH-EMAT에 의한 Digital 신호처리에 관한 연구

  • 김재열;박환규;조영태;김형일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.198-203
    • /
    • 1993
  • In this study, byusing EMAT(Electro Magnetic Acoustic Transducer) the artificial slit is installed on 12B-SUS pipe test piece. By mading 4 cycle SH-bust wave (EMA) incidence to 45 .deg. angle, the signaldata of pulse, which is recevied from EMAT translated intodigital-signal-processing-method SSP and Deconvolution method by using FACOM. Results of these indicated that (1) this method of this study shows exellent result more than Ultrasonic testing method; (2) noise is well removed by SSP using signal dataa and resolving power and S/N ratio are advanced; (3) regradless of Ultrasonic wave, whichhas properties of generalstainless steel is generated into multiscattering and reflection phenomena, the resolving power of more than two times is progressed by being translated into Decon-volution method; and (4) as addition-averaging-processing number is increaing, the resolving power and S/N ratio are improved and the satisfactory signal is obtained.

A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method (경계요소법을 이용한 초음파 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2000
  • Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated.

  • PDF

Analysis of Fault Plane Solution and Stress Field Using the Micro-ewarthquakes in the Central Region of South Korea (남한 중부지역에서 발생한 미소지진의 단층면해와 응력장 해석)

  • Cheong, Tae-Woong;Lee, Jae-Gu;Lee, Duk-Kee;Lee, Eun-Ah;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.292-300
    • /
    • 2001
  • By using two methods we obtained plane solutions for 5 groups of earthquakes including 13 events, which occurred in the central region of South Korea after December 1997. The first method is the composite fault plane solution by P wave polarity, and the second the solution by amplitude ratio (SV/P, SH/P, SV/SH) and P and S wave polarities. The two method results show similar results. The strike of fault is in the direction of NNE-SSW and WNW-ESE with the movement of strike-slip or strike-slip including thrust component. The compressional axis of the stress field dominantly trends ENE-WSW or NE-SW. The results are almost consistent with the other main events occurred in and around the Korean Peninsula.

  • PDF